• Title/Summary/Keyword: Lie algebra

검색결과 141건 처리시간 0.021초

The Embeddability of s1(n,C) Modules

  • Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.803-808
    • /
    • 2007
  • In present article, we consider the embeddability problems for finite dimensional irreducible modules over a complex simple Lie algebra L. For s1(n,C) modules, we determine when one can be embedded into the other if s1(n,C) modules are tensor products of fundamental modules.

  • PDF

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

A BASIS OF THE SPACE OF MEROMORPHIC QUADRATIC DIFFERENTIALS ON RIEMANN SURFACES

  • Keum, J.H.;Lee, M.K.
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.127-134
    • /
    • 1998
  • It is proved [6] that there exists a basis of $L^\Gamma$ (the space of meromorphic vector fields on a Riemann surface, holomorphic away from two fixed points) represented by the vector fields which have the expected zero or pole order at the two points. In this paper, we carry out the same task for the quadratic differentials. More precisely, we compute a basis of $Q^\Gamma$ (the sapce of meromorphic quadratic differentials on a Riemann surface, holomorphic away from two fixed points). This basis consists of the quadratic differentials which have the expected zero or pole order at the two points. Furthermore, we show that $Q^\Gamma$ has a Lie algebra structure which is induced from the Krichever-Novikov algebra $L^\Gamma$.

  • PDF

YANG-MILLS INDUCED CONNECTIONS

  • Park, Joon-Sik;Kim, Hyun Woong;Kim, Pu-Young
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.813-821
    • /
    • 2010
  • Let G and H be compact connected Lie groups with biinvariant Riemannian metrics g and h respectively, ${\phi}$ a group isomorphism of G onto H, and $E:={\phi}^{-1}TH$ the induced bundle by $\phi$ over the base manifold G of the tangent bundle TH of H. Let ${\nabla}$ and $^H{\nabla}$ be the Levi-Civita connections for the metrics g and h respectively, $\tilde{\nabla}$ the induced connection by the map ${\phi}$ and $^H{\nabla}$. Then, a necessary and sufficient condition for $\tilde{\nabla}$ in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) to be a Yang- Mills connection is the fact that the Levi-Civita connection ${\nabla}$ in the tangent bundle over (G, g) is a Yang- Mills connection. As an application, we get the following: Let ${\psi}$ be an automorphism of a compact connected semisimple Lie group G with the canonical metric g (the metric which is induced by the Killing form of the Lie algebra of G), ${\nabla}$ the Levi-Civita connection for g. Then, the induced connection $\tilde{\nabla}$, by ${\psi}$ and ${\nabla}$, is a Yang-Mills connection in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) over the base manifold (G, g).

대수 발달의 단계에 관한 드모르간의 관점 연구 (De Morgan's view on the development of algebra)

  • 유미경;김재홍;권석일;박선용;최지선;박교식
    • 한국수학사학회지
    • /
    • 제21권4호
    • /
    • pp.61-78
    • /
    • 2008
  • 이 연구에서는 대수 발달의 단계에 관한 드모르간의 관점을 그가 사용한 용어를 바탕으로 산술, 보편산술, 기호대수, 의미적 대수의 순서로 나누어 논의한다. 드모르간은 즉각적으로 계산 결과를 얻는 산술과 문자기호를 사용하는 보편산술을 구분하였다. 그에 의하면, 보편산술은 산술에서 대수로 이행하는 과도기적 단계인 바, 이 단계에서 이상하고 불합리한 현상들이 발생하기에 대수가 필요하게 된다. 대수 발달의 단계에 관해 드모르간이 가진 관점의 특징은 기호의 의미가 사라진 규칙 체계 즉, 기호적 계산법을 얻은 후, 이 기호적 계산법 자체를 논리적으로 만들기 위해 기호에 확장된 의미를 부여하여 의미적 계산법으로 만든다는 것이다. 단일대수는 -1에 확장된 의미를 부여함으로써 만들어지고, 이중대수는 $\sqrt{-1}$에 확장된 의미를 부여함으로써 만들어진다. 드모르간에 의하면, 대수 발달에서는 앞에서 제시된 체계의 불완전성에 주목하여 다음 체계를 이끌어낸다.

  • PDF

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

SAMELSON PRODUCTS IN FUNCTION SPACES

  • GATSINZI, JEAN-BAPTISTE;KWASHIRA, RUGARE
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1297-1303
    • /
    • 2015
  • We study Samelson products on models of function spaces. Given a map $f:X{\rightarrow}Y$ between 1-connected spaces and its Quillen model ${\mathbb{L}}(f):{\mathbb{L}}(V){\rightarrow}{\mathbb{L}}(W)$, there is an isomorphism of graded vector spaces ${\Theta}:H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W))){\rightarrow}H_*({\mathbb{L}}(W){\oplus}Der({\mathbb{L}}(V),{\mathbb{L}}(W)))$. We define a Samelson product on $H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W)))$.

ON SPLIT LEIBNIZ TRIPLE SYSTEMS

  • Cao, Yan;Chen, Liangyun
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1265-1279
    • /
    • 2017
  • In order to study the structure of arbitrary split Leibniz triple systems, we introduce the class of split Leibniz triple systems as the natural extension of the class of split Lie triple systems and split Leibniz algebras. By developing techniques of connections of roots for this kind of triple systems, we show that any of such Leibniz triple systems T with a symmetric root system is of the form $T=U+{\sum}_{[j]{\in}{\Lambda}^1/{\sim}}I_{[j]}$ with U a subspace of $T_0$ and any $I_{[j]}$ a well described ideal of T, satisfying $\{I_{[j]},T,I_{[k]}\}=\{I_{[j]},I_{[k]},T\}=\{T,I_{[j]},I_{[k]}\}=0 \text{ if }[j]{\neq}[k]$.

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

PSEUDO-RIEMANNIAN SASAKI SOLVMANIFOLDS

  • Diego Conti;Federico A. Rossi;Romeo Segnan Dalmasso
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.115-141
    • /
    • 2023
  • We study a class of left-invariant pseudo-Riemannian Sasaki metrics on solvable Lie groups, which can be characterized by the property that the zero level set of the moment map relative to the action of some one-parameter subgroup {exp tX} is a normal nilpotent subgroup commuting with {exp tX}, and X is not lightlike. We characterize this geometry in terms of the Sasaki reduction and its pseudo-Kähler quotient under the action generated by the Reeb vector field. We classify pseudo-Riemannian Sasaki solvmanifolds of this type in dimension 5 and those of dimension 7 whose Kähler reduction in the above sense is abelian.