DOI QR코드

DOI QR Code

ON SPLIT LEIBNIZ TRIPLE SYSTEMS

  • Cao, Yan (School of Mathematics and Statistics Northeast Normal University) ;
  • Chen, Liangyun (School of Mathematics and Statistics Northeast Normal University)
  • Received : 2016.07.05
  • Published : 2017.07.01

Abstract

In order to study the structure of arbitrary split Leibniz triple systems, we introduce the class of split Leibniz triple systems as the natural extension of the class of split Lie triple systems and split Leibniz algebras. By developing techniques of connections of roots for this kind of triple systems, we show that any of such Leibniz triple systems T with a symmetric root system is of the form $T=U+{\sum}_{[j]{\in}{\Lambda}^1/{\sim}}I_{[j]}$ with U a subspace of $T_0$ and any $I_{[j]}$ a well described ideal of T, satisfying $\{I_{[j]},T,I_{[k]}\}=\{I_{[j]},I_{[k]},T\}=\{T,I_{[j]},I_{[k]}\}=0 \text{ if }[j]{\neq}[k]$.

Keywords

References

  1. S. Albeverio, S. Ayupov, and B. A. Omirov, On nilpotent and simple Leibniz algebras, Comm. Algebra 33 (2005), no. 1, 159-172. https://doi.org/10.1081/AGB-200040932
  2. S. Albeverio, S. Ayupov, and B. A. Omirov, Cartan subalgebras, weight spaces, and criterion of solvability of finite dimensional Leibniz algebras, Rev. Mat. Complut. 19 (2006), no. 1, 183-195.
  3. S. Ayupov and B. Omirov, On Leibniz algebras, Algebra and operator theory, 1-12, Kluwer Acad. Publ., Dordrecht, 1998.
  4. D. W. Barnes, On Engel's theorem for Leibniz algebras, Comm. Algebra 40 (2012), no. 4, 1388-1389. https://doi.org/10.1080/00927872.2010.551532
  5. D. W. Barnes, On Levi's theorem for Leibniz algebras, Bull. Aust. Math. Soc. 86 (2012), no. 2, 184-185. https://doi.org/10.1017/S0004972711002954
  6. M. Bremner and J. Sanchez-Ortega, Leibniz triple systems, Commun. Contemp. Math. 16 (2014), no. 1, 1350051, 19 pp.
  7. A. J. Calderon Martin, On split Lie algebras with symmetric root systems, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 3, 351-356. https://doi.org/10.1007/s12044-008-0027-3
  8. A. J. Calderon Martin, On split Lie triple systems, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 165-177. https://doi.org/10.1007/s12044-009-0017-0
  9. A. J. Calderon Martin, On simple split Lie triple systems, Algebr. Represent. Theory 12 (2009), no. 2-5, 401-415. https://doi.org/10.1007/s10468-009-9150-9
  10. A. J. Calderon Martin and J. M. S. Delgado, On split Leibniz algebras, Linear Algebra Appl. 436 (2012), no. 6, 1651-1663. https://doi.org/10.1016/j.laa.2011.02.046
  11. A. J. Calderon Martin and M. F. Piulestan, On split Lie triple systems. II, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 2, 185-198. https://doi.org/10.1007/s12044-010-0021-4
  12. Y. Cao and L. Y. Chen, On the structure of graded Leibniz triple systems, Linear Algebra Appl. 496 (2016), no. 5, 496-509. https://doi.org/10.1016/j.laa.2016.01.043
  13. P. Kolesnikov, Varieties of dialgebras, and conformal algebras, (Russian) Sibirsk. Mat. Zh. 49 (2008), no. 2, 322-339; translation in Sib. Math. J. 49 (2008), no. 2, 257-272. https://doi.org/10.1007/s11202-008-0032-x
  14. J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, (French) Enseign. Math. 39 (1993), no. 3-4, 269-293.
  15. Y. Ma and L. Y. Chen, Some structures of Lebniz triple systems, arXiv:1407.3978, 2014.