Acknowledgement
Supported by : Tianjin polytechnic University
References
- F. Ardila, Catalan Numbers, Math. Inteligencer 38 (2016), no. 2, 4-5.
-
U. Duran, M. Acikgoz, and S. Araci, Symmetric identities involving weighted q-Genocchi polynomials under
$S_4$ , Proc. Jangjeon Math. Soc. 18 (2015), no. 4, 455-465. - Y. He, Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials, Adv. Difference Equ. 2013 (2013), 246, 10 pp. https://doi.org/10.1186/1687-1847-2013-10
- Y. He and C. Wang, New symmetric identities involving the Eulerian polynomials, J. Comput. Anal. Appl. 17 (2014), no. 3, 498-504.
- K. Inkeri, On Catalan's problem, Acta Arith. 9 (1964), 285-290. https://doi.org/10.4064/aa-9-3-285-290
- D. S. Kim, Identities associated with generalized twisted Euler polynomials twisted by ramified roots of unity, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 363-377.
- D. S. Kim, N. Lee, J. Na, and K. H. Park, Abundant symmetry for higher-order Bernoulli polynomials (I), Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 3, 461-482.
- D. S. Kim, N. Lee, J. Na, and K. H. Park, Identities of symmetry for higher-order Euler polynomials in three variables (I), Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 51-74.
-
T. Kim, Symmetry p-adic invariant integral on
${\mathbb{Z}}_p$ for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220 -
T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on
${\mathbb{Z}}_p$ , Russ. J. Math. Phys. 16 (2009), no. 1, 93-96. https://doi.org/10.1134/S1061920809010063 - T. Kim, An identity of symmetry for the generalized Euler polynomials, J. Comput. Anal. Appl. 13 (2011), no. 7, 1292-1296.
- T. Kim and D. S. Kim, A new approach to Catalan numbers using differential equations, (submitted), arXiv:1605.05927.
- T. Kim and D. S. Kim, Symmetric identities for an analogue of Catalan polynomials, (submitted).
- A. Natucci, Recerche sistematiche intorno al "teorema di Catalan", (Italian) Giorn. Mat. Battaglini (5) 2(82) (1954), 297-300.
- S. Roman, The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.
- A. Rotkiewicz, Sur le problem de Catalan, (French) Elem. Math. 15 (1960), 121-124.