DOI QR코드

DOI QR Code

TRIPLE SYMMETRIC IDENTITIES FOR w-CATALAN POLYNOMIALS

  • Kim, Dae San (Department of Mathematics Sogang University) ;
  • Kim, Taekyun (Department of Mathematics, College of Science Tianjin Polytechnic University)
  • Received : 2016.06.29
  • Published : 2017.07.01

Abstract

In this paper, we introduce w-Catalan polynomials as a generalization of Catalan polynomials and derive fourteen basic identities of symmetry in three variables related to w-Catalan polynomials and analogues of alternating power sums. In addition, specializations of one of the variables as one give us new and interesting identities of symmetry even for two variables. The derivations of identities are based on the p-adic integral expression for the generating function of the w-Catalan polynomials and the quotient of p-adic integrals for that of the analogues of the alternating power sums.

Keywords

Acknowledgement

Supported by : Tianjin polytechnic University

References

  1. F. Ardila, Catalan Numbers, Math. Inteligencer 38 (2016), no. 2, 4-5.
  2. U. Duran, M. Acikgoz, and S. Araci, Symmetric identities involving weighted q-Genocchi polynomials under $S_4$, Proc. Jangjeon Math. Soc. 18 (2015), no. 4, 455-465.
  3. Y. He, Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials, Adv. Difference Equ. 2013 (2013), 246, 10 pp. https://doi.org/10.1186/1687-1847-2013-10
  4. Y. He and C. Wang, New symmetric identities involving the Eulerian polynomials, J. Comput. Anal. Appl. 17 (2014), no. 3, 498-504.
  5. K. Inkeri, On Catalan's problem, Acta Arith. 9 (1964), 285-290. https://doi.org/10.4064/aa-9-3-285-290
  6. D. S. Kim, Identities associated with generalized twisted Euler polynomials twisted by ramified roots of unity, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 363-377.
  7. D. S. Kim, N. Lee, J. Na, and K. H. Park, Abundant symmetry for higher-order Bernoulli polynomials (I), Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 3, 461-482.
  8. D. S. Kim, N. Lee, J. Na, and K. H. Park, Identities of symmetry for higher-order Euler polynomials in three variables (I), Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 51-74.
  9. T. Kim, Symmetry p-adic invariant integral on ${\mathbb{Z}}_p$ for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220
  10. T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on ${\mathbb{Z}}_p$, Russ. J. Math. Phys. 16 (2009), no. 1, 93-96. https://doi.org/10.1134/S1061920809010063
  11. T. Kim, An identity of symmetry for the generalized Euler polynomials, J. Comput. Anal. Appl. 13 (2011), no. 7, 1292-1296.
  12. T. Kim and D. S. Kim, A new approach to Catalan numbers using differential equations, (submitted), arXiv:1605.05927.
  13. T. Kim and D. S. Kim, Symmetric identities for an analogue of Catalan polynomials, (submitted).
  14. A. Natucci, Recerche sistematiche intorno al "teorema di Catalan", (Italian) Giorn. Mat. Battaglini (5) 2(82) (1954), 297-300.
  15. S. Roman, The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.
  16. A. Rotkiewicz, Sur le problem de Catalan, (French) Elem. Math. 15 (1960), 121-124.