• Title/Summary/Keyword: Leaf production

Search Result 1,399, Processing Time 0.027 seconds

Synergistic effect of phosphate solubilization by Burkholderia strains isolated from button mushroom bed (양송이배지로부터 분리한 Burkholderia균의 인산가용화 공조효과)

  • Park, Ji-Hoon;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • This study investigated the synergistic effect of single inoculation and co-inoculation of phosphate-solubilizing bacteria (PSB) Burkholderia metallica JH-7 and Burkholderia contaminans JH-15. Phosphate-solubilizing abilities of these strains were assessed by measuring phosphorus content in culture media that were singly inoculated or co-inoculated with these strains for 7 days. B. metallica JH-7 was found to release the highest content of soluble phosphorus ($140.80{\mu}g\;mL^{-1}$ ) into the medium, followed by single inoculation of B. contaminans JH-15 ($135.95{\mu}g\;mL^{-1}$ ) and co-inoculation of two strains ($134.84{\mu}g\;mL^{-1}$ ). The highest pH reduction, organic acid production, and glucose consumption were observed in the medium inoculated with B. metallica JH-7 alone compared with that in the medium co-inoculated with both the strains. Results of a plant growth promotion bioassay showed 17.4% and 7.48% higher leaf and root growth, respectively, in romaine lettuce inoculated with B. metallica JH-7 alone than in romaine lettuce inoculated with a control strain. However, no significant difference was observed between single inoculation and co-inoculation of these strains with respect to phosphorus release and plant growth. Although the results of the present study did not show the synergistic effect of phosphate solubilization by the PSB strains examined, these results indicate that treatment with PSB exerts a beneficial effect on crop growth.

Grain Yield Potential of a Low-Tillering Large Panicle Type in Rice (벼 소얼 수중형 초형의 수량성)

  • Kim, Je-Kyu;B.S., Vergara
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.361-371
    • /
    • 1992
  • For the increase of grain yield potential in rice, a low-tillering large panicled type has been suggested as an ideotype. A low-tillering plant type may have different yield potential and needs different cultural practices from that used in a high-tillering type for the maximum yield. This study was conducted to evaluate the grain yield performances of a low-tillering large panicled rice and high-tillering small panicled rice at different plant spacings, nitrogen(N) levels and seedling numbers per hill. A low-tillering large panicled genotype, IR25588 was compared with a high-tillering small panicled IR58. The grain yield of IR25588 was significantly higher than that of IR58 under a narrow spacing with high N level. The maximum yields of IR58 and IR25588 were reached at about 35,000 and 40,000 spikelets per m$^2$, respectively. The increased grain yield in IR25588 was mainly due to the increase in spikelet number per unit area which is the most precise indicator of grain yield in rice. The optimum spacing for the maximum yield was denser for IR25588 than that for IR58 under high N level. The intra-hill competition of the low-tillering type was lower than that of the high-tillering type. The higher dry matter production and bigger leaf area and culm weight were the main factors for increased grain yield in a low-tillering panicle weight type. Based on the results, the yield potential of a low-tillering panicle weight type was higher than that of a high-tillering panicle number type, especially under a close spacing with high N level.

  • PDF

Effect of Elevated Ultraviolet-B Radiation on Yield and Differential Expression of Proteome in Perilla (perilla frutescens L.) (잎들깨 수량과 단백질체 발현에 미치는 UV-B의 영향)

  • Hong, Seung-Chang;Hwang, Seon-Woong;Chang, An-Cheol;Shin, Pyung-Gyun;Jang, Byoung-Choon;Lee, Chul-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Plastichouse cultivation for crops and vegetables in the winter has been widely popularized in Korea. In the vinylhouse Ultraviolet B penetration is lower than in the field, and so some problems, as plant overgrowth and outbreak of disease, occurred frequently. The effect of artificial supplement ultraviolet B $(UV-B:280{\sim}320nm)$ radiation on the physiological responses and yield of perilla (perilla frutescens) was investigated UV-B ray was radiated on perilla with the 10th leaf stage at the distance of 90, 120 and 150 cm from the plant canopy for 30 days after planting in the vinylhouse. The production of fresh perilla leaves was high in the order of plastic house, ambient+50% of supplemental UV-B, ambient ambient+100% of supplemental UV-B. Enhanced UV-B radiation affected the intensity of thirty-three proteins in 2-dimensional electrophoretic analysis of proteins and ten proteins out of them seemed to be responsive to UV-B : a protein was, ATP synthase CF1 alpha chain, down regulated and nine proteins (Chlorophyll a/b bindng protein type I, Chlorophyll a/b binding protein type II precursor, Photosystem I P700 chlorophyll a apoprotein A2, DNA recombination and repair protein recF, Galactinol synthase, S-adenosyl-L-methionine, Heat shock protein 21, Calcium-dependent protein kinase(CDPK)-like, Catalase) were up-regulated.

Effects of Split Nitrogen Application on Growth Characters, Yield Potential and Feed Value in Jeju Italian Millet (제주조의 질소분시 횟수에 따른 생육반응, 수량성 및 사료가치 변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Kil;Ko, Dong-Hwan;Cho, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • This study was conducted at a volcanic ash soil in the Experimental Farm of Cheju national university from May 1, 2000 to August 25, 2000 to determine the optimum frequency of split N application for. forage production of Jeju Italian millet(Setaria italica Beauvis). N .rate was applied with 200kg N/ha, and frequencies of the split application were 1. 2, 3, 4 and f times. Days to heading was 87 days in the N applied plot all at once, was delayed to 93 days at the five times split-applied plot. Plant height was the greatest (143cm) at the four times split-applied plot, but above o. below that was short. Leaf length, number of leaves and nodes were a similar tendency to plant height. SPAD(Soil Plant Analysis Development) reading values rose 34.3∼36.2 as N was split-applied from one to five times. Fresh forage, dry matter, crude Protein and TDN yield at the H split-applied to four times increased 33.08∼5l.50MT/ha, 9.94∼13.36MT/ha, 0.93∼1.70MT/ha and 5.06∼7.28MT/ha, respectively, but at the five tines split-applied plot decreased to 49.33MT/ha, 12.69MT/ha, 1.65MT/ha and 6.98 MT/ha, respectively. As the increasing of N split-applied. crude protein, crude fat NFE and TDN content increased 9.4∼13.0%, 1.5∼l.9%, 44.5∼45.5% and 50.9∼55.0%, respectively, whereas crude fiber and crude ash content decreased 35.3∼31.6% and 9.3∼8.3, respectively.

Changes in Inorganic Element Concentrations of Drained Nutrient Solution and Leaves in Compliance with Numerical Increment of Fruiting Node during Hydroponic Cultivation of Cherry Tomato (방울토마토 수경재배 시 착과 절위 증가에 따른 공급액, 배액 및 식물체의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Kim, Gyoung Je;Lee, Bong Chun;Lee, Hee Chul;Yun, Yeo Uk;Park, Soo Bok;Choi, Jong Myoung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2017
  • Production cost as well as environmental contamination can be reduced by reuse of drained nutrient solution in hydroponic. This research was conducted to obtain the information in changes in inorganic elements concentration of supplied and drained nutrient solution as well as of plant leaves. To achieve the objective, the samples of supplied and drained solution and cherry tomato leaf tissues were periodically collected and analyzed during the hydroponic cultivation. The electrical conductivity (EC) of supplied and drained nutrient solution in early growth stage of cherry tomato were measured as around $2.0dS{\cdot}m^{-1}$, but those values move up with the passage of time reaching to $2.0dS{\cdot}m^{-1}$ at flowering stage of 9th fruiting node. The pHs of drained solution in early growth stage were 6.4 to 6.7, however those showed a tendency to get lowered to 5.9 to 6.1 as time passed during the crop cultivation. The concentration differences of $NO_3-N$, P, K, Ca, and Mg between supplied and drained solution were not distinctive until flowering stages of 4th fruiting nodes, while those in drained solution moved up after the stage. The tissue N contents of leaves decrease gradually and those of K and Ca increased as crops grew. However, Tissue P and Mg contents were maintained similarly from transplant to end-crop. The above results would be used in correction of drained nutrient solution when element compositions are varied compared to supplied solution in hydroponic cultivation of tomatoes.

Anti-oxidant and Anti-inflammatory Properties of Clerodendrum trichotomum Leaf Extracts (누리장나무 잎 추출물의 항산화 및 항염증 활성)

  • Kim, Ji Hye;Song, Hana;Ko, Hee Chul;Lee, Ju Yeop;Jang, Mi Gyeong;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.640-645
    • /
    • 2017
  • Clerodendrum trichotomum (CT) leaves and stems have been used in folk medicine for their anti-hypertension, arthritis, rheumatism, and anti-inflammatory properties. This study was performed to evaluate the potential of CT as an anti-oxidant and anti-inflammatory agent. CT leaves were extracted using 70% ethanol (EtOH). Then, using this extract, a hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), and n-butanol (BuOH) fraction was prepared. The polyphenol contents were higher in the EtOAc fraction ($78.08{\mu}g/mg$) and BuOH fraction ($77.54{\mu}g/mg$) compared to the other fractions. Also, these two fractions exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities. Xanthine oxidase inhibitory activities were higher in the $CHCl_3$ fraction ($IC_{50}=4.43{\mu}g/ml$) and EtOAc fraction ($IC_{50}=5.69{\mu}g/ml$). Moreover, the EtOAc fraction effectively inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells ($IC_{50}=18.87{\mu}g/ml$). Thus, we investigated the effects of the EtOAc fraction on the expression of pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. The treatment of the EtOAc fraction ($100{\mu}g/ml$) effectively decreased the levels of the tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results suggest the potential for CT extract and fractions as promising anti-oxidant and anti-inflammatory agents.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF

Influence of Root Restriction Materials and Media on Soil Environment and Growth of Runner Plantlets during Propagation of 'Seolhyang' Strawberry (차근육묘를 위한 자재 및 배지 종류가 토양환경과 '설향' 딸기 자묘의 생장에 미치는 영향)

  • Park, Gab Soon;Chae, Soo Cheon;Oh, Chan Sik;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • This research was conducted to evaluate the influence of root restriction materials and media on the growth of runner plantlets of 'Seolhyang' strawberry in a nursery field. To achieve this, the influence of three kinds of root media on the growth of runner plantlets was monitored when polyethylene film was used as the root restriction material. In addition, the influence of various root restriction materials (RRS) such as transparent polyethylene film (PE), non-woven fabric (NF), perforated polyethylene film (PP), and root proofing sheet (RPS) on the changes in volumetric water content (VWC) and temperature of root media as well as growth of runner plantlet were investigated when expanded rice hull (ERH) was used as the root medium. In the comparison of root media, growth parameters such as leaf area and crown thickness at 20 d after fixation as well as crown thickness and fresh weights of root and above-ground tissue at 40 d after runner plantlet fixation were higher in the ERH treatment than in sandy loam and loamy sand. When the influence of RRS was compared, the VWC of ERH was 55% just after irrigation, but decreased to 26% at just before irrigation. Ranges of the VWC as influenced by irrigation cycle were 16 to 10% in the PP and less than 10% in the NF and RPS. The soil temperature in the PE treatment was around $1^{\circ}C$ lower than in NF, PP, and RPS. The differences between day and night temperatures were also smaller in the PE treatment rather than those in NF, PP, and RPS. The growths of runner plantlet 50 d after fixation showed that plant heights as well as fresh weights of root and above-ground tissue were higher in the PE treatment than in NF, PP, and RPS. NF and PP did not effectively restrict roots inside the medium and the roots of runner plantlets penetrated through the root restriction materials resulting in the formation of root system below the restriction materials. The above results indicate that ERH is more effective than sandy loam or loamy sand as root medium. PE rather than NF, PP, or RPS as root restriction material resulted in better growth of runner plantlets in propagation of 'Seolhyang' strawberry. The results of this research will be used for production of high quality runner plantlets in strawberry propagation.

Irrigation Method of Nutrient Solution Affect Growth and Yield of Paprika 'Veyron' Grown in Rockwool and Phenolic Foam Slabs (Rockwool과 Phenolic Foam 배지에서 양액공급 방법이 프리카(Capsicum annuum) 'Veron'의 생육과 수량에 미치는 영향)

  • Kim, Kwang Soo;Lee, Yong Beum;Hwang, Seung Jae;Jeong, Byoung Ryong;An, Chul Geon
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • This study was carried out to find a reasonable irrigation method of a nutrient solution for the phenolic foam slab (foam LC) used in a trial experiment to substitute the rockwool slab in the production of paprika (Capsicum annuum 'Veyron'). 100, 90, and 80 mL of a nutrient solution was supplied per plant each time when the accumulated radiation reached to 100, $90J{\cdot}cm^{-2}$, and they were named as the 100-100, 90-90, and 90-80 treatment, respectively. The drain percentage per plant of the 100-100 treatment was high by 33.8% in rockwool and 36.7% in foam LC (Lettuce Cube) and that of 90-80 treatment was low by 30.4% and 33.7%. The water content and EC of the rockwool slab were maintained in the range of 63.6-68.9% and $4.4-5.1mS{\cdot}cm^{-1}$, while those of the foam LC slab were in the range of 52.9-58.8% and $5.5-6.5mS{\cdot}cm^{-1}$. The plant height and leaf size of the 100-100 and 90-90 treatments increased in a similar manner, while those of the 90-80 treatment decreased and those of the rockwool were greater than those of the foam LC. The fruit size and weight of the 100-100 and 90-90 treatments were similarly bigger and heavier than those of the 90-80 treatment. The number of fruits harvested per plant was the greatest in the 90-80 treatment with 8 and 8.3 fruits in the rockwool and foam LC. The number of marketable fruits in the rockwool and foam LC was the greatest with 18.1 and 18.2, respectively, in the 90-90 treatment, while that in the 90-80 treatment was 17.2 and 16.8, respectively. The number of unmarketable fruits of the 90-80 treatment was the greatest (1.7-1.8 fruits per plant) in both the rockwool and foam LC, and most of them were small sized or blossom end rot fruits. The yield of the 90-90 treatment was the greatest among the irrigation.

Long-term Changes in Soil Chemical Properties in Organic Arable Farming Systems in Korea (작물의 지속적인 유기 재배가 토양의 이화학적 특성변화에 미치는 영향)

  • Lee, Yun-Jeong;Choe, Du-Hoi;Kim, Seung-Hwan;Lee, Sang-Min;Lee, Yong-Hwan;Lee, Byung-Mo;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.228-234
    • /
    • 2004
  • In organic farming, nutrients for the crop production are mostly supplied by compost containing various organic materials. The long-term organic cultivation would result in continuous changes of soil chemical properties and fertility. The aim of this study was to investigate the contribution of long-term organic cultivation to the soil fertility in Korea focusing on the chemical properties of soil. Soil samples were collected from organic farms that had been cultivated for 8-10 years after certification of organic product through the conversion periods of 2-3 years. Thereby each organic farm had acquired optimal cultivating techniques and soil condition. We separated organic farms into three groups by cultivating crops, i.e. leaf vegetables, fruit vegetables and fruit trees. In each group, five representative farms were chosen in order to investigate the relationships between application rate of compost and nutrient contents in soil. The application rate of compost was approximately $10-15Mg\;10a^{-1}$ for the first 2-3 years at the beginning of organic farming and then reduced to a rate of $3-4Mg\;10a^{-1}$ after stabilization of organic matter content in soil with $30-50g\;10a^{-1}$. However, the continuous organic farming for 8-10 years resulted in accumulation of nutrients, especially of P, in soil probably due to the excessive amounts of compost applied. In conclusion, we suggest that the application rate and organic sources of compost should be decided on the basis of P content in soil by soil testing and thereafter the lack of soil N content for crop cultivation should be compensated by crop rotation with such as legumes. This might be an approach to the original meaning of organic farming as an environmental friendly agriculture.