Long-term Changes in Soil Chemical Properties in Organic Arable Farming Systems in Korea

작물의 지속적인 유기 재배가 토양의 이화학적 특성변화에 미치는 영향

  • Lee, Yun-Jeong (National Institute of Agricultural Science and Technology) ;
  • Choe, Du-Hoi (National Institute of Agricultural Science and Technology) ;
  • Kim, Seung-Hwan (National Institute of Agricultural Science and Technology) ;
  • Lee, Sang-Min (National Institute of Agricultural Science and Technology) ;
  • Lee, Yong-Hwan (National Institute of Agricultural Science and Technology) ;
  • Lee, Byung-Mo (National Institute of Agricultural Science and Technology) ;
  • Kim, Tae-Wan (Hankyong National University)
  • Received : 2004.07.20
  • Accepted : 2004.08.05
  • Published : 2004.08.30

Abstract

In organic farming, nutrients for the crop production are mostly supplied by compost containing various organic materials. The long-term organic cultivation would result in continuous changes of soil chemical properties and fertility. The aim of this study was to investigate the contribution of long-term organic cultivation to the soil fertility in Korea focusing on the chemical properties of soil. Soil samples were collected from organic farms that had been cultivated for 8-10 years after certification of organic product through the conversion periods of 2-3 years. Thereby each organic farm had acquired optimal cultivating techniques and soil condition. We separated organic farms into three groups by cultivating crops, i.e. leaf vegetables, fruit vegetables and fruit trees. In each group, five representative farms were chosen in order to investigate the relationships between application rate of compost and nutrient contents in soil. The application rate of compost was approximately $10-15Mg\;10a^{-1}$ for the first 2-3 years at the beginning of organic farming and then reduced to a rate of $3-4Mg\;10a^{-1}$ after stabilization of organic matter content in soil with $30-50g\;10a^{-1}$. However, the continuous organic farming for 8-10 years resulted in accumulation of nutrients, especially of P, in soil probably due to the excessive amounts of compost applied. In conclusion, we suggest that the application rate and organic sources of compost should be decided on the basis of P content in soil by soil testing and thereafter the lack of soil N content for crop cultivation should be compensated by crop rotation with such as legumes. This might be an approach to the original meaning of organic farming as an environmental friendly agriculture.

현재 우리나라에서 유기농업이란 화학비료와 농약을 주지 않고 작물을 재배하는 기술로 통칭되어지고 있으나 광의의 개념으로 농업 생태계의 건강 생물의 다양성. 생물학적 순환 및 토양 생물학적 활동을 촉진 및 증진시키는 하나의 총체적 생산관리체제라 할 수 있다 유기재배에 있어 작물을 위한 양분의 공급을 주로 다양한 퇴비에 의존하므로 지속적인 유기농 재배는 토양의 비옥도 및 이화학적 특성에 결정적인 영향을 미칠 수 있다. 따라서 본 실험에서는 품질 인증 후 유기농 재배를 장기적으로 수행하고 있는 안정적인 유기농산물 생산 농가를 대상으로 하여 지속적인 유기농 재배가 어떻게 토양의 이화학적 특성 변화에 영향을 미치는지 구명해 보고자 수행되었다. 이를 위해 전국의 유기농가 중 2-3년의 전환기를 거쳐 품질인증 받은 후 8-10년이 지난 안정적인 유기농 재배기술을 보유하고 있는 유기농가의 재배지 토양을 대상으로 시료 채취 후 토양 내 이화학적 특성을 알아보았다. 이때 작물은 엽채, 과채, 과수의 세 부분으로 크게 분류하여 대상작물에 대해 각각 5농가씩 선정하여 토양 내 퇴비의 시용량과 토양 내 양분함량과의 관계를 질소, 인산, 칼륨에 초점을 맞추어 알아보았다. 퇴비의 시용량은 대개의 농가가 처음 2-3년 간 10a 당 10-15톤의 축분퇴비를 공급하여 유기물 함량을 $10-50g\;kg^{-1}$로 조절한 후 일단 유기물 함량이 충분히 안정되었을 때 퇴비의 량을 10a 당 3-4톤으로 감량하여 공급하였다. 그러나 장기간의 유기농 재배는 질소, 인산, 칼륨 및 기타 금속양이온의 토양 내 양분 집적을 초래하였으며 특히 인의 경우 축적정도는 매우 높았다. 따라서 유기 재배지 토양 내 양분 축적을 막고 효과적인 양분함량의 관리를 위해 퇴비의 시용량은 적절한 토양 검정을 통해 합리적으로 유기물 원 및 시용량을 결정할 뿐 아니라 시용량 결정시에도 질소 기준에서 인산의 기준으로 전환하여 시용함으로서 토양 내 축적 인산의 함량을 줄여나가며 동시에 부족한 질소를 두과작물을 이용한 윤작체계에 의해 보충함으로써 본래의 유기농 의미에 충실한 환경친화적 방향으로 나아가야 할 것이다.

Keywords

References

  1. Berry, P. M., R. Sylvester-Badley, L. Philipps, D. J. Hatch, S. P. Cuttle, F. W. Rayns, and P. Gosling. 2003. Is the productivity of organic farms restricted by the supply of arable nitrogen? Soil Use Manage. 18:248-255 https://doi.org/10.1079/SUM2002129
  2. CODEX Alimentarius Commission. 1999. Guidelines for the production, processing, labeling, and marketing of organically produced foods. FAO, Rome, Italy
  3. Gosling, P., and M. Shepherd. 2004. Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agr. Eco. Environ. in press
  4. Haraldsen, T. K., A. Asdal, C. Grasdalen, L. Nesheim, and T. N. Ugland. 2000. Nutrient balances and yields during conversion to organic cropping systems on silt loam and clay soils in Norway. Biol. Agric. Hort. 17:229-246 https://doi.org/10.1080/01448765.2000.9754844
  5. Kwak, H. K., K. S. Seong, N. J. Lee, S. B. Lee, M. S. Han, and K. A. Roh. 2003. Changes in chemical properties and fauna of plastic film house soil by application of chemical fertilizer and compost pig manure. Korean J. Soil. Sci. Fert. 36:304-310
  6. Legendre, P., and L. Legendre. 1998. Numerical ecology. Elsevier Science, New York, NY, USA
  7. Liebig, M. A., and J. W. Doran. 1999. Impact of organic production practices on soil quality indicators. J. Environ. Qual. 28:1601-1609 https://doi.org/10.2134/jeq1999.00472425002800050026x
  8. Ludwig, J. A., and J. F. Reynolds. 1988. Statistical ecology - A primer on methods and computing. Jone Wiley and Sons, Inc., New York, NY, USA
  9. Mäder, P., A. $Flie\beta{bach,}$ D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296:1694-1697 https://doi.org/10.1126/science.1071148
  10. Mayer, J. 1997. Kalium- und Phosphofluesse sowie K-Versorgungsgrad eines biologisch-dynamisch bewirtschafteten Betriebes im Hinblick aufeine nachhaltige Bodenbewirtschaftung. In U. Koepke (ed.) Beitraege zur 4. Wissenschaftstagung zum Oekologischen Landbau. Verlag Koester, Berlin, Germany
  11. NIAST. 1999. A guidance of fertilization depending on crops. National Institute of Agricultural Science and Technology, Suwon, Korea
  12. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  13. NIAST. 2003. Monitoring Project on Agri-Environment Quality in Korea. National Institute of Agricultural Science and Technology, Suwon, Korea
  14. Penfold, C. M., M. Miyan, T. G. Reeves, and I. T. Grierson. 1995. Biological farming for sustainable agricultural production. Aust. J. Exp. Agric. 35:849-856 https://doi.org/10.1071/EA9950849
  15. Pulleman, M., A. Jongmans, J. Marinissen, and J. Bouma. 2003. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands. Soil Use Manage. 19:157-165 https://doi.org/10.1079/SUM2003186
  16. Quinn, G. P., and M. J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge University Press, New York, NY, USA
  17. Rohlf, F. J. 1994. NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter Publishers, Setauket, New York, NY, USA
  18. Ryan, M. 1999. Is an enhanced soil biological community, relative to conventional neighbors, a consistent feature of alternative (organic and biodynamic) agricultural systems. Biol. Agric. Hort. 17:131-144 https://doi.org/10.1080/01448765.1999.9754832
  19. Schmid, O. 2003. Codex alimentarius, In M. Yussefi and H. Willer (ed.) The world of organic agriculture - statistics and future prospects. IFOAM, Bonn, Germany
  20. Song, S. M., H. K. Kwak, B. L. Hur, and S. E. Lee. 1996. Use efficiency of nitrate nitrogen accumulated in plastic film house soils under continuous vegetable cultivation. J. Korean Soc. Soil Sci. Fert. 29:347-352
  21. Stockdale, E. A., N. H. Lampkin, M. Hovi, R. Keatinge, E. K. M. Lennartsson, D. W. Macdonald, S. Padel, F. H. Tattersall, M. S. Wolfe, and C. A. Watson. 2001. Agronomic and environmental implications of organic farming systems. Adv. Agron. 70:261-325 https://doi.org/10.1016/S0065-2113(01)70007-7