DOI QR코드

DOI QR Code

Anti-oxidant and Anti-inflammatory Properties of Clerodendrum trichotomum Leaf Extracts

누리장나무 잎 추출물의 항산화 및 항염증 활성

  • Kim, Ji Hye (Department of Biology, Jeju National University) ;
  • Song, Hana (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Ko, Hee Chul (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Lee, Ju Yeop (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Jang, Mi Gyeong (Department of Biology, Jeju National University) ;
  • Kim, Se Jae (Department of Biology, Jeju National University)
  • 김지혜 (제주대학교 생물학과) ;
  • 송하나 (제주대학교 제주조릿대 사업단) ;
  • 고희철 (제주대학교 제주조릿대 사업단) ;
  • 이주엽 (제주대학교 제주조릿대 사업단) ;
  • 장미경 (제주대학교 생물학과) ;
  • 김세재 (제주대학교 생물학과)
  • Received : 2017.01.18
  • Accepted : 2017.02.20
  • Published : 2017.06.30

Abstract

Clerodendrum trichotomum (CT) leaves and stems have been used in folk medicine for their anti-hypertension, arthritis, rheumatism, and anti-inflammatory properties. This study was performed to evaluate the potential of CT as an anti-oxidant and anti-inflammatory agent. CT leaves were extracted using 70% ethanol (EtOH). Then, using this extract, a hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), and n-butanol (BuOH) fraction was prepared. The polyphenol contents were higher in the EtOAc fraction ($78.08{\mu}g/mg$) and BuOH fraction ($77.54{\mu}g/mg$) compared to the other fractions. Also, these two fractions exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities. Xanthine oxidase inhibitory activities were higher in the $CHCl_3$ fraction ($IC_{50}=4.43{\mu}g/ml$) and EtOAc fraction ($IC_{50}=5.69{\mu}g/ml$). Moreover, the EtOAc fraction effectively inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells ($IC_{50}=18.87{\mu}g/ml$). Thus, we investigated the effects of the EtOAc fraction on the expression of pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. The treatment of the EtOAc fraction ($100{\mu}g/ml$) effectively decreased the levels of the tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results suggest the potential for CT extract and fractions as promising anti-oxidant and anti-inflammatory agents.

누리장나무의 잎과 줄기는 예로부터 항고혈압, 관절염, 류마티스 관절염, 항염증 등을 치료하는 민간약재로 사용되어 왔다. 본 연구에서는 누리장나무의 잎 추출물과 그 분획물의 항산화 및 항염증 소재로서의 활성가능성을 확인하기 위하여 수행되었다. 누리장나무 잎의 ethanol (EtOH)로 추출물과 이 추출물을 분획하여 얻은 hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), n-butanol (BuOH) 분획물들의 총 폴리페놀 함량을 비교한 결과, 총 폴리페놀 함량은 EtOAc 분획물($78.08{\mu}g/mg$)과 BuOH 분획물($77.54{\mu}g/mg$)에서 높게 측정되었다. 각 분획물의 항산화 활성을 비교한 결과, 폴리페놀 함량이 높은 EtOAc 분획물과 BuOH 분획물에서 높은 DPPH (1,1-diphenyl-2-picrylhydrazyl) 및 ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)) radical 소거활성을 나타내었다. 그리고 xanthine oxidase 저해활성은 $CHCl_3$ 분획물($IC_{50}=4.43{\mu}g/ml$)과 EtOAc 분획물($IC_{50}=5.69{\mu}g/ml$)에서 높게 나타났다. EtOAc 분획물은 RAW 264.7 세포에서 lipopolysaccharide (LPS)로 유도된 nitric oxide (NO)의 생성을 효과적으로 억제하였다($IC_{50}=18.87{\mu}g/ml$). 또한, EtOAc 분획물($100{\mu}g/ml$)은 LPS로 지극한 RAW 264.7 세포에서 tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$)와 interleukin-6 (IL-6)의 생성과 inducible nitric oxide synthase (iNOS)와 cyclooxygenase-2 (COX-2) 단백질의 발현을 효과적으로 억제하였다. 본 연구결과는 누리장나무 잎 추출물과 분획물이 항산화 및 항염증 소재로서의 활용가능성이 있음을 제시해 준다.

Keywords

References

  1. Ahn, D. K. 2003. Illustrated book of Korean medical herbs, pp. 323, Kyo-Hak Publishing Co, Ltd, Korea.
  2. Aniya, Y. and Naito, A. 1993. Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem. Pharmacol. 45, 37-42. https://doi.org/10.1016/0006-2952(93)90374-6
  3. Cho, W., Nam, J. W., Kang, H. J., Windono, T., Seo, E. K. and Lee, K. T. 2009. Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-kappaB pathway in LPS-stimulated murine macrophages. Int. Immunopharmacol. 9, 1049-1057. https://doi.org/10.1016/j.intimp.2009.04.012
  4. Choi, J. H., Wang, W. K. and Kim, H. K. 2004. Studies on the anti-inflammatory effects of Clerodendron trichotomum thunberg leaves. Arch. Pharm. Res. 27, 189-193. https://doi.org/10.1007/BF02980105
  5. Coleman, J. W. 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1, 1397-1406. https://doi.org/10.1016/S1567-5769(01)00086-8
  6. Delgado, A. V., McManus, A. T. and Chamers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance. Neuropeptides 37, 355-361. https://doi.org/10.1016/j.npep.2003.09.005
  7. DeWitt, D. and Smith, W. L. 1995. Yes, but do they still get headaches. Cell 83, 345-348. https://doi.org/10.1016/0092-8674(95)90109-4
  8. Han, J. T. 2006. Development of functional material using the root of Rosa multiflora. Food Industry Nutr. 11, 59-65.
  9. Hippeli, S. and Elstner, E. F. 1999. Inhibition of biochemical model reactions for inflammatory processes by plant extracts: a review on recent developments. Free Radic. Res. 31, 81-87. https://doi.org/10.1080/10715769900301361
  10. Hwang, J. G., Yun, J. K., Han, K. H., Do, E. J., Lee, J. S., Lee, E. J., Kim, J. B. and Kim, M. R. 2011. Anti-oxidation and anti-aging effect of mixed extract from Korean medicinal herbs. Kor. J. Herbology 26, 111-117.
  11. Hwang, J. H., Choi, S. Y., Ko, H. C., Jang, M. K., Jin, Y. J., Kang, S. I., Park, J. G., Chung, W. S. and Kim, S. J. 2007. Anti-inflammatory effect of the hot water extract from Sasa quelpaertensis leaves. Food Sci. Biotechnol. 16, 728-733.
  12. Inchi, T., Shimizu, T. and Yoshihira, K. 1996. In Biotechnology in agriculture and forestry. pp. 108, Berlin Heidelberg, Germany.
  13. Jeong, H. J., Park, S. B., Kim, S. and Kim, H. K. 2007. Total polyphenol content and antioxidative activity of wild grape (Vitis coignetiae) extracts depending on ethanol concentrations. J. Kor. Soc. Food Sci. Nutr. 36, 1491-1496. https://doi.org/10.3746/jkfn.2007.36.12.1491
  14. Jo, N. R., Park, C. I., Park. C, W., Shin, D. H., Hwang, Y. C., Kim, Y. H. and Park, S. N. 2012. Cellular protective effects of peanut sprout root extracts. Chem. Eng. 23, 183-189.
  15. Kang, B. K., Kim, K. B. W. R., Kim, M. J., Bark, S. W., Pak, W. M., Kim, B. R., Ahn, N. K., Choi, Y. U. and Ahn, D. H. 2014. Anti-inflammatory activity of an ethanol extract of Laminaria japonica root on lipopolysaccharide-induced inflammatory responses in RAW 264.7 Cells. J. Kor. Soc. Food. Sci. Nutr. 46, 729-733.
  16. Kim, S. H., Choi, H. J., Chung, M. J. and Ham, S. S. 2008. Cytoprotective effect by antioxidant activity of Codonopsis lanceolata and Platycodon grandiflorum ethyl acetate fraction in human HepG2 cells. J. Kor. Soc. Food. Sci. Nutr. 40, 696-701.
  17. Knowles, R. G. and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J. 298, 249-258. https://doi.org/10.1042/bj2980249
  18. Koo, M. S., Kwo, Y. G., Park, J. H., Choi, W. J., Billiar, T. R. and Kim, Y. M. 2002. Signaling and function of caspase and c-jun N-terminal kinase in cisplatin-induced apoptosis. Mol. Cells 13, 194-201.
  19. Lee, C. B. 1973. An illustrated book of korean plant. Hyang Mun publishing company, Korea.
  20. Lee, H. N., Lim, D. Y., Lim, S. S., Kim, J. D. and Park, J. H. Y. 2011. Anti-inflammatory effect of ethanol extract from Eupatorium japonicum. J. Kor. Soc. Food. Sci. Nutr. 43, 65-71.
  21. Lee, W. T. 1996. Lineamenta florae korea. pp. 934-935, 1st ed., Academic Books. Seoul.
  22. Li, C. and Wang, M. H. 2011. Antioxidant activity of peach blossom extracts. J. Kor. Soc. Appl. Biol. Chem. 54, 46-53.
  23. Lodovici, M., Guglielmi, F., Meoni, M. and Dolara, P. 2001. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 39, 1205-1210. https://doi.org/10.1016/S0278-6915(01)00067-9
  24. OH, S. Y., Kim J. W., Lee K. L., Hwang, B. Y., Han, J. W., Lee, G. Y., Ahn, C. K. and Lee, J. K. 2014. Anti-inflammatory activity of the methanol extract of leaves Clerodendrum trichotomum. Bull. Sci. ED. 30, 29-37.
  25. Okave, S., Takeuchi, K., Takagi, K. and Shibata, M. 1975. Stimulatory effect of the water extract of bamboo grass (Folin solution) on gastric acid secretion in pylorus-ligated rats. Jan. J. Pharmacol. 25, 608-609.
  26. Park, J. S. and Kim, H. Y. 2000. current trend of NSAID use. Kor. J. Med. 59, 491-504.
  27. Park, M. A. and Kim, H. J. 2007. Anti-inflammatory constituents isolated from Clerodendron tri-chotomum Thuberg leaves (CTL) inhibits pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages by suppressing $NF-{\kappa}B $ activation. Arch. Fharm. Res. 30, 755-760. https://doi.org/10.1007/BF02977639
  28. Park, Y. O. and Lim, H. S. 2009. Antioxidant activities of bamboo (Sasa Borealis) leaf extract according to extraction solvent. J. Kor. Soc. Food. Sci. Nutr. 38, 1640-1648. https://doi.org/10.3746/jkfn.2009.38.12.1640
  29. Stuehr, D. J., Cho, H. J., Kwon, N. S., Weise, M. F. and Nathan, C. F. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 88, 7773-7777. https://doi.org/10.1073/pnas.88.17.7773
  30. Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A. N. 2006. Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell. Biol. 38, 1654-1661. https://doi.org/10.1016/j.biocel.2006.03.021
  31. Wang, W. X., Xiong, J., Tang, Y., Zhu, J. J., Li, M., Zhao, Y., Yang, G. X., Xia, G. and Hu, J. F. 2013. Rearranged abietane diterpenoids from the roots of Clerodendrum trichotomum and their cytotoxicities against human tumor cells. Phytochemistry 89, 89-95. https://doi.org/10.1016/j.phytochem.2013.01.008
  32. Yoo, Y. C., Lee, G. W. and Cho, Y. H. 2016. Antioxidant and anti-inflammatory effects of extracts from the flowers of weigela subsessilis on RAW 264.7 macrophages. J. Life Sci. 26, 338-345. https://doi.org/10.5352/JLS.2016.26.3.338
  33. Zelko, I. N., Mariani, T. J. and Folz, R. J. 2002. Superoxide dismutase multigene family: a comparison of the CuZn- SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33, 337-349. https://doi.org/10.1016/S0891-5849(02)00905-X