• 제목/요약/키워드: Lagrange stability

검색결과 72건 처리시간 0.025초

ORTHOGONAL STABILITY OF AN EULER-LAGRANGE-JENSEN (a, b)-CUBIC FUNCTIONAL EQUATION

  • Pasupathi, Narasimman;Rassias, John Michael;Lee, Jung Rye;Shim, Eun Hwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권2호
    • /
    • pp.189-199
    • /
    • 2022
  • In this paper, we introduce a new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation and obtain its general solution. Furthermore, we prove the Hyers-Ulam stability of the new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation in orthogonality normed spaces.

MULTI-JENSEN AND MULTI-EULER-LAGRANGE ADDITIVE MAPPINGS

  • Abasalt Bodaghi;Amir Sahami
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.673-692
    • /
    • 2024
  • In this work, an alternative fashion of the multi-Jensen is introduced. The structures of the multi-Jensen and the multi-Euler-Lagrange-Jensen mappings are described. In other words, the system of n equations defining each of the mentioned mappings is unified as a single equation. Furthermore, by applying a fixed point theorem, the Hyers-Ulam stability for the multi-Euler-Lagrange-Jensen mappings in the setting of Banach spaces is established. An appropriate counterexample is supplied to invalidate the results in the case of singularity for multiadditive mappings.

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

APPROXIMATION OF ALMOST EULER-LAGRANGE QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS

  • John Michael Rassias;Hark-Mahn Kim;Eunyoung Son
    • 충청수학회지
    • /
    • 제37권2호
    • /
    • pp.87-97
    • /
    • 2024
  • For any fixed integers k, l with kl(l - 1) ≠ 0, we establish the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation f(kx + ly) + f(kx - ly) + 2(l - 1)[k2f(x) - lf(y)] = l[f(kx + y) + f(kx - y)] in normed spaces and in non-Archimedean spaces, respectively.