Lagrange Stability and Poisson Stability in Transformation Groups by Jong Suh Park and Yun Hoy Gu #### 1. Introduction Let (X,T) be a transformation group. A point x of X is said to be Lagrange stable if the orbit closure \overline{xT} of x is compact. Suppose that the phase group T is noncompact. Given a point x of X, the limit set L(x) of x is defined to be the intersection of $\overline{xK^c}$ for all compact subsets K of T. A point x of X is said to be Poisson stable if x belongs to L(x). In this paper some properties of the above concepts are discussed. These results are the generalization of those in flows. # 2. Preliminaries **Definition 2.1.** A transformation group is a triple (X, T, ψ) where X is a topological space called the phase space, T is a topological group called the phase group and $\psi: X \times T \rightarrow X$, $(x,t) \rightarrow xt$ is a continuous map such that for all $x \in X$, $s,t \in T$, xe = x, (xs) t = x(st) where e is the identity of T. It will be convenient to suppress the map ϕ and then denote the transformation group (X,T,ϕ) simply as (X,T). **Definition 2.2.** Let (X,T) be a transformation group. T is said to act freely on X if for each point x of X the map $\psi_X: T \rightarrow X$, $t \rightarrow xt$ is injective. **Definition 2.3.** Let (X,T) be a transformation group. A subset M of X is said to be invariant if Mt is contained in M for all $t \in T$. **Definition 2.4.** Let (X,T) and (Y,T) be transformation groups. A continuous map $f: X \to Y$ is called a homomorphism if f(xt) = f(x)t for all $x \in X$, $t \in T$. **Definition 2.5.** A topological space X is said to be hemicompact if there exists a sequence (Kn) of compact subsets of X such that if K is any compact subset of X, then K is contained in Kn_o for some n_o . In this paper we only deal with a transformation group whose phase space is Hausdorff and phase group is noncompact. #### 3. Limit sets **Definition 3.1.** Let (X,T) be a transformation group and x a point of X. The limit set L(x) of x is defined by the intersection of $\overline{xK^c}$ for all compact subsets K of T. For a net (t_{α}) in T, $t_{\alpha} \to \infty$ is to mean that (t_{α}) is ultimately outside each compact subset of T. **Theorem** 3.2. Let (X,T) be a transformation group. For all points x,y of X, $y \in L(x)$ if and only if there exists a net (t_{α}) in T such that $t_{\alpha} \rightarrow \infty$, $xt_{\alpha} \rightarrow y$. - **Proof.** (\Rightarrow) Let (K_{α}) be the family of all compact subsets of T with the inclusion order and (U_{β}) the family of all neighborhoods of y with the reverse inclusion order. Define $(\alpha_1, \beta_1) \leq (\alpha_2, \beta_2)$ by $\alpha_1 \leq \alpha_2$ and $\beta_1 \leq \beta_2$. For any (α, β) , since $U_{\beta} \cap xK_{\alpha}{}^c \neq \phi$, there exists $t_{(\alpha, \beta)} \in K_{\alpha}{}^c$ such that $xt_{(\alpha, \beta)} \in U_{\beta}$. It is not hard to show that $t_{(\alpha, \beta)} \to \infty$, $xt_{(\alpha, \beta)} \to y$. - (\Leftarrow) Given any compact subset K of T, there exists α_0 such that $t_{\alpha} \in K^c$ for all $\alpha \geq \alpha_0$. For each neighborhood U of y, there exists α_1 such that $xt_{\alpha} \in U$ for all $\alpha \geq \alpha_1$. There exists α_2 such that α_0 , $\alpha_1 \leq \alpha_2$. Clearly $xt_{\alpha 2} \in U \cap xK^c$ and so $U \cap xK^c \neq \phi$. Thus $y \in xK^c$, consequently $y \in L(x)$. Thorem 3.3. Let (X,T) be a transformation group. For any point x of X, $\overline{xT} = xT \cup L(x)$. **Proof.** Clearly, $xT \cup L(x) \subset \overline{xT}$. Suppose that $xT \cup L(x) \neq \overline{xT}$. There exists $y \in \overline{xT} - (xT \cup L(x))$. Since $y \notin L(x)$, there exists a compact subset K of T such that $y \in \overline{xK^c}$. Thus $U \cap xK^c = \phi$ for some neighborhood U of y. Clealy, xK is a closed subset of X, Since $y \notin xT$, $y \notin xK$. Take $V = U \cap (xK)^c$. Then V is a neighborhood of y and $V \cap xT = \phi$. Thus $y \notin xT$. This is a contradiction. Hence $\overline{xT} = xT \cup L(x)$. **Theorem 3.4.** Let (X,T) be a transformation group. For any point x of X, L(x) is invariant. **Proof.** Let y be a point of L(x) and t an element of T. There exists a net (t_{α}) in T such that $t_{\alpha} \to \infty$, $xt_{\alpha} \to y$. It is not hard to show that $t_{\alpha}t \to \infty$. Since $xt_{\alpha}t \to yt$, $yt \in L(x)$. Thus L(x) is invariant. **Theorem** 3.5. Let (X,T) be a transformation group and x a point of X. For any point y of xT, L(y) = L(x). **Proof.** y=xt for some $t \in T$. Let $z \in L(y)$. Then there exists a net (t_{α}) in T such that $t_{\alpha} \to \infty$, $yt_{\alpha}=xtt_{\alpha} \to z$. It is not hard to show that $tt_{\alpha} \to \infty$. Thus $z \in L(x)$. Let $z \in L(x)$. Then there exists a net (t_{α}) in T such that $t_{\alpha} \to \infty$, $xt_{\alpha}=xtt^{-1}t_{\alpha}=yt^{-1}t_{\alpha}\to z$. Clearly, $t^{-1}t_{\alpha}\to \infty$ and so $z \in L(y)$. Hence L(y)=L(x). **Theorem** 3.6. Let $f: (X,T) \rightarrow (Y,T)$ be a homomorphism of transformation groups. For any point x of X, $f(L(x)) \subset L(f(x))$. **Proof.** Let $y \in f(L(x))$. y = f(z) for some $z \in L(x)$. There exists a net (t_{α}) in T such that $t_{\alpha} \to \infty$, $xt_{\alpha} \to z$. $f(xt_{\alpha}) = f(x)t_{\alpha} \to f(z) = y$. Thus $y \in L(f(x))$. Hence $f(L(x)) \subset L(f(x))$. ## 4. Lagrange stability **Definition 4.1.** Let (X,T) be a transformation group. A point x of X is said to be Lagrange stable if the orbit closure \overline{xT} is compact. **Theorem 4.2.** Let (X,T) be a transformation group. If a point x of X is Lagrange stable, then L(x) is nonempty. **Proof.** Let (K_{α}) be the family of all compact subsets of T. We will prove that $(\overline{xK_{\alpha}}^c)$ has the finite intersection property $\bigcap_{i=1}^{n} \overline{xK^{c}_{\alpha_{i}}} \supset \bigcap_{i=1}^{n} xK^{c}_{\alpha_{i}} \supset \overline{x}\bigcap_{i=1}^{n} K^{c}_{\alpha_{i}}$. Since T is noncompact, $\bigcap_{i=1}^{n} K^{c}_{\alpha_{i}} \neq \phi$. Thus $\bigcap_{i=1}^{n} \overline{xK^{c}_{\alpha_{i}}} \neq \phi. \text{ Since } \overline{xT} \text{ is compact, } \bigcap \overline{xK_{\alpha}^{c}} = L(x) \neq \phi.$ Corollary 4.3. Let (X,T) be a transformation group. If a point x of X is Lagrange stable, then L(x) is compact. **Theorem 4.4.** Let (X,T) be a transformation group. If a point x of X is Lagrange stable, then for each neighborhood U of L(x), there exists a compact subset K of T such that $xK^c \subset U$. **Proof.** By theorem $4.2 L(x) \neq \phi$. Let (K_{α}) be the family of all compact subsets of T with the inclusion order. Suppose that there exists a neighborhood U of L(x) such that $xK_{\alpha}{}^{c} \subset U$ for all α . For each α , there exists $t_{\alpha} \in K_{\alpha}{}^{c}$ such that $xt_{\alpha} \in U$. (xt_{α}) is a net in \overline{xT} . Since \overline{xT} is compact, (xt_{α}) has a convergent subnet. Let $xt_{\alpha} \rightarrow y \in \overline{xT}$. It is not hard to show that $t_{\alpha} \rightarrow \infty$. Thus $y \in L(x)$ and so U is a neighborhood of y. Since $xt_{\alpha} \rightarrow y$, there exists α_{0} such that $xt_{\alpha} \in U$ for all $\alpha \geq \alpha_{0}$. This is a contradiction. Hence the theorem holds. **Theorem 4.5.** Let (X,T) be a transformation group whose phase space is locally compact. Given a point x of X, if $L(x) \neq \phi$ is compact and for each neighborhood U of L(x), there exists a compact subset K of T such that $xK^c \subset U$, then x is Lagrange stable. **Proof.** Since X is locally connected and L(x) is compact, there exists a neighborhood U of L(x) such that \overline{U} is compact. By assumption, there exists a compact subset K of T such that $xK^c \subset U$. $xT = xK \cup xK^c \subset xK \cup U$, $xT \subset xK \cup U = xK \cup \overline{U}$. $xK \cup \overline{U}$ is compact. Thus $x\overline{T}$ is compact. **Theorem 4.6.** Let (X,T) be a transformation group whose phase spase is locally compact and phase group is hemicompact. There exists a sequence (K_n) of compact subsets of T such that if K is any compact subset of T, then $K \subset K n_0$ for some n_0 . Suppose that $K n^c$ is connected for all n. Given a point x of X, if $L(x) \neq \phi$ is compact, then x is Lagrange stable. **Proof.** Suppose that there exists a neighborhood U of L(x) such that $xKn^c \subset U$ for all n. Since X is locally compact and L(x) is compact, there exists a neighborhood V of L(x) such that $\overline{V} \subset U$ and \overline{V} is compact. For each n, there exists $t_n \in Kn^c$ such that $xt_n \in U$ so that $xt_n \in \overline{V}$. Since $L(x) \neq \phi$, there exists $y \in L(x)$. V is a neighborhood of y. For each n, since $y \in \overline{xKn^c}$, $V \cap xKn^c \neq \phi$ so there exists $Sn \in Kn^c$ such that $xSn \in V$. For each n, since Kn^c is connected, there exists $r_n \in Kn^c$ such that $xr_n \in \partial V$. (xr_n) is a sequence in ∂V . Since ∂V is compact, (xr_n) has a convergent subsquence. Let $xr_n \to z \in \partial V$. It is not hard to show that $r_n \to \infty$. Since $z \in L(x) \subset V$, $V \cap \partial V \neq \phi$ and this is a contradiction. Thus for any neighborhood U of L(x), there exists n_o such that $xKn_o \subset U$. By theorem 4.5, x is Lagrange stable. **Theorem 4.7.** Let (X,T) be a transformation group whose phase space is first countable, phase group is hemicompact. For all points x,y of X, $y \in L(x)$ if and only if there exists a sequence (t_n) in T such that $t_n \to \infty$, $xt_n \to y$. **Proof.** (\Rightarrow) Since T is hemicompact, there exists a sequence (Kn) of compact subsets of T such that if K is any compact subset of T, then $K \subset Kn_o$ for some n_o . We can assume that (Kn) has the inclusion order. Let (Um) be a countable basis at y with the reverse inclusion order. Define $(n_1, m_1) \leq (n_2 m_2)$ by $n_1 \leq n_2, m_1 \leq m_2$. For each (n, m), $Um \cap xKn^c \neq \phi$ so there exists $t_{(n,m)} \in Kn^c$ such that $xt_{(n,m)} \in Um$. Take $t_n = t_{(n,n)}$. It is not hard to show that $t_n \to \infty$ and $xt_n \to y$. (⇐) By theorem 3.2, it is obvious. **Theorem 4.8.** Let (X,T) be a transformation group whose phase space is locally compact, first countable and phase group is hemicompact. There exists a sequence (Kn) of compact subsets of T such that if K is any compact subset of T, then $K \subset Kn_0$ for some n_o . Suppose that Kn^c is connected for all n. If $x \in X$ is Lagrange stable, then L(x) is connected. **Proof.** Suppose that L(x) is disconnected. $L(x) = A \cup B$ for some disjoint nonempty closed subsets A, B of X. B^c is a neighborhood of A. Since L(x) is compact, A is compact. Since X is locally compact, there exists a neighborhood U of A such that $\bar{U} \subset B^c$ and \bar{U} is compact. There exist $a \in A$, $b \in B$ for A, B are nonempty. By theorem 4.7, there exist sequences (t_m) , (s_k) in T such that t_m , $s_k \to \infty$, $xt_m \to a$, $xs_k \to b$. Since U is a neighborhood of a and \bar{U}^c is a neighborhood of b, there exist m_0 , k_0 such that $xt_m \in U$, $xs_k \in \bar{U}^c$ for all $m \ge m_0$, $k \ge k_0$. For each n, there exist m(n), k(n) such that t_m , $s_n \in K_n^c$ for all $m \ge m(n)$, $k \ge k(n)$. Let $l_1 = max (m_0, k_0, m(1), k(1))$, $l_{i+1} = max (i+1), k(i+1)$, l_{i+1} . Clealy, $l_1 < l_2 < \cdots, tl_i$, $sl_i \in K_i^c$, $st_{l_i} \in U$, $st_{l_i} \in \bar{U}^c$ for all i. For each i, since K_i^c is connected, there exists $r_{l_i} \in K_{l_i}^c$ such that $xr_{l_i} \in \partial U$. (xr_{l_i}) is a sequence in ∂U . Since ∂U is compact, (xr_{l_i}) has a convergent subsequence. Let $xr_{l_i} \to g \cup U$, $g \in A \cup B = L(x)$. It is not hard to show that $r_{l_i} \to \infty$. Thus $g \in L(x)$, this is a contradiction. Hence L(x) is connected. **Theorem 4.9.** Let (X,T) be a transformation group. If a point x of X is Lagrange stable, then any point y of L(x) is Lagrange stable. **Proof.** Since $y \in L(x)$. $\overline{yT} \subset L(x)$. Thus \overline{yT} is compact. ### 5. Poisson stability **Definition** 5.1. Let (X,T) be a transformation group. A point x of X is said to be *Poisson stable* if $x \in L(x)$. It is not hard to show that the following three statements are equivalent $$x \in L(x), L(x) = \overline{xT}, xT \cap L(x) \neq \phi$$ **Theorem** 5.2. Let $f: (X,T) \rightarrow (Y,T)$ be a homomorphism of transformation groups. If $x \in X$ is Poisson stable, then f(x) is Poisson stable. **Proof.** Since $x \in L(x)$, $f(x) \in f(L(x)) \subset L(f(x))$. **Theorem** 5.3. Let (X,T) be a transformation group. Suppose that X is first countable, T is hemicompact and T acts freely on X. If $x \in X$ is not Poisson stable, then $\psi_x : T \to xT$ is a homeomorphism. **Proof.** Clearly, ψ_x is a continuous bijection. Let A be a closed subset of T. $\psi_x(A) = xA$. Let y belong to the closure of xA in xT. Since X is first countable, there exists a sequence (t_m) in A such that $xt_m \rightarrow y$. Since T is hemicompact, there exists a sequence (K_n) of compact subsets of T such that if K is any compact subset of T, then $K \subset Kn_0$ for some n_0 . Let us show that there exists n_0 such that for each m, there exists $m_0 \ge m$ such that $t_m \in Kn_0$. Suppose that for each m, there exists m_0 such that $t_m \in Kn^c$ for all $m \ge m_0$. It is not hard to show that $t_m \rightarrow \infty$. By theorem 3.2, $y \in L(x)$. Thus $y \in xT \cap L(x)$ and $x \in L(x)$. This is a contradiction for x is not Poisson stable. Take $m_1 = 1$ For each k, there exists $m_{k+1} \ge m_k + 1$ such that $t_{m_k+1} \in Kn_0$. (t_{m_k}) is a sequence in Kn_0 . Since Kn_0 is compact, (t_{m_k}) has a convergent subsequence. Let $t_{m_k} \to t \in Kn_0$. Clearly, $xt_{m_k} \to xt$. (t_{m_k}) is also a sequence in A. Thus $t \in \bar{A} = A$ and $yt \in xA$. Since (xt_{m_k}) is a subsequence of (xt_m) , $xt_m \to y$, $y = xt \in xA$ for X is Hausdorff. Thus the closure of xA in xT contained in xA and so xA is a closed subset of xT. Hence ϕ_x^{-1} is continuous. Consequently, ϕ_x is a homeomorphism. Let (X,T) be a transformation group. If $x \in X$ is not Poisson stable, then $xT \cap L(x) = \phi$ by definition. Since $\overline{xT} = xT \cup L(x)$, $L(x) = \overline{xT} - xT$. So $L(x) = \overline{xT} - xT$. But if x is Poisson stable, this does not hold in general. **Theorem 5.4.** Let (X,T) be a transformation group. Suppose that X is locally compact, T is hemicompact and T acts freely on X. If $x \in X$ is Poisson stable, then $L(x) = \overline{xT - xT}$. **Proof.** It is clear that $\overline{xT} - xT \subset L(x)$. Let $y \in L(x)$. Given any neighborhood U of y, we will show that $U \cap (L(x) - xT) \neq \phi$. Since X is locally compact, there exists a neighborhood V of y such that $\overline{V} \subset U$ and \overline{V} is compact. Since T is hemicompact, there exists a sequence (K_n) of compact subsets of T such that if K is any compact subset of T, then $K \subset K_n$ for some n_0 . It is not hard to show that $L(x) = \bigcap_{n=1}^{\infty} \overline{xK_n}^c$. $V \cap xK_1^c \neq \phi$. Thus there exists $t_1 \in K_1^c$ such that $xt_1 = y_1 \in V$. Since T acts freely on X, $xK_1 \cap xK_1^c = \phi$ so $y_1 \notin xK_1$. Thus $V \cap (xK_1)^c$ is a neighborhood of y_1 . There exists a neighborhood V_1 of v_1 such that $\overline{V} \subset V \cap (xK_1)^c$. Since $v_1 = xt_1 \in xT \subset \overline{xT} = L(x)$, $v_1 \cap xK_2^c \neq \phi$ so there exists $t_2 \in K_2^c$ such that $xt_2 = y_2 \in V_1$. Since $xK_2 \cap xK_2^c = \phi$, $y_2 \notin xK_2$. So $V_1 \cap (xK_2)^c$ is a neighborhood of v_2 . There exists a neighborhood $v_2 \in xK_2$ such that $v_2 \subset v_1 \cap (xK_2)^c$. We proceed in this way repeatedly. Clearly $v_1 \cap xK_1^c = \phi$ for all $v_2 \cap xK_2^c = 0$. Since $v_3 \cap xK_2^c = 0$ is compact, $v_4 \cap xK_2^c = 0$ is compact, $v_4 \cap xK_3^c = 0$ is compact, $v_4 \cap xK_4^c compact. This means that $v_4 \cap xK_4^c = 0$ is consequently, $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. Therefore $v_4 \cap xK_4^c = 0$ is consequently, $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. Therefore $v_4 \cap xK_4^c = 0$ is consequently, $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. Therefore $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. This means that $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. Therefore $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. The exists $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. The exists $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. The exists $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c = 0$. The exists $v_4 \cap xK_4^c = 0$ is $v_4 \cap xK_4^c$ ### References - 1. O. Hajek, *Prolongations in topological dynamics*, Lecture Notes No. 144, 79-89, Springer-Verlag, Berlin, 1970. - 2. S. Elaydi, On some stability notions in topological dynamics, *Journal of Differential Equations*, 47 (1983) 24-34. - 3. R. Ellis, Lectures on topological dynamics, Benjamin Inc., New York, 1969. - 4. K.S. Sibirsky, Introduction to topological dynamics, Noordoff International Publishing, 1975. - 5. S. Willard, General topology, Addison-Wesley, Reading, 1970.