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Lagrange Stability and Poisson Stability in Transformation Groups

by Jong Suh Park and Yun Hoy Gu

1. Introduction

Let (X,T) be a transformation group. A point z of X is said to be Lagrange stable if the orbit
closure zT of z is compact. Suppose that the phase group 7' is noncompact. Given a point z of X,
the limit set L(z) of z is defined to be the intersection of zK* for all compact subsets K of T. A
point z of X is said to be Poisson stable if x belongs to L(z). In this paper some properties of the
above concepts are discussed. These results are the generalization of those in flows.

2. Preliminaries

Definition 2.1. A transformation group is a triple (X,7.,¢) where X is a topological space called
the phase space, T is a topological group called the phase group and ¢ : Xx T—X, (x,t)—zt is a
continuous map such that for all z=X, steT, ze=z, (zs)t=x(st) where e is the identity of T.

It will be convenient to suppress the map ¢ and then denote the transformation group (X,T,¢)
simply as (X, T).

Definition 2.2, Let (X,T) be a transformation group. T is said to act freely on X if for each
point z of X the map ¢x : T—X, t—at is injective.

Definition 2.3. Let (X,T) be a transformation group. A subset M of X is said to be invariant
if Mt is contained in M for all t=T.

Definition 2.4. Let (X,T) and (Y,T) be transformation groups. A continuous map f: X—Y
is called a homomorphism if f(zt)=f(z)t {or all zX, t=T.

Definition 2.5, A topological space X is said to be hemicompact if there exists a sequence (Kn)
of compact subsets of X such that if K is any compact subset of X, then K is contained in K,
for some n,.

In this paper we only deal with a transformation group whose phase space is Hausdorff and phase
group is noncompact.

3. Limit sets

Definition 3.1. Let (X, T) be a transformation group and z a point of X. The limit set L(z)
of z is defined by the intersection of zK* for all compact subsets K of T.
For a net (¢.) in T, f,— oo is to mean that (z,) is ultimately outside each compact subset of 7.

Theorem 3.2, Let (X,T) be a transformation group. For all points z,y of X, yeL(z) if and
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only if there exists a net (t,) in T such that ty—oo, Tte—y.

Proof. (=) Let (K,) be the family of all compact subsets of T with the inclusion order and
(Us) the family of all neighborhoods of y with the reverse inclusion ‘order. Define (a;, 1) < (az, Bs2)
by a;<a, and B <B;. For any (a,p), since UsNzK,S #¢, there exists (. SK,* such that
zt o pnEUp. It is not hard to show that ¢y, g—00, Tte,n—y.

(&) Given any compact subset K of T, there exists a, such that t,&K° for all a>a,. For each

neighborhood U of ¥, there exists @; such that zt, €U for all a>a;. There exists a, such that aq,

a,<a,. Clearly zt,,=UNzK® and so UNzK°#¢. Thus yezKe, consequently ye=L(z).

Thorem 3.3. Let (X,T) be a transformation group. For any point z of X, zT=zTUL(x).

Proof. Clearly, zTUL(z)C zT. Suppose that zTUL (z) #zT. There exists y=zT—(zTUL()).
Since y&L(z), there exists a compact subset K of T such that y=zK®. Thus UNzK°=¢ for some
neighborhood U of y. Clealy, zK is a closed subset of X, Since y&2T, yg£zK. Take V=UN (zK)".
Then V is a neighborhood of y and VzT=¢. Thus y&zT. This is a contradiction. Hence zT=
zTUL(z).

Theorem 3.4. Let (X,T) be a transformation group. For any point =z of X, L(x) is invariant.

Proof. Let y be a point of L(z) and £ an element of 7. There exists a net (¢) in T such
that t,—00, zt,—y. It is not hard to show that f,t—oo. Since zt.t—yt, yt=L(z). Thus L(z) is

invariant.

Theorem 3.5. Let (X,T) be a transformation group and z a point of X. For any point y of zT,
L(y)=L(x).

Proof. y=at for some t==T. Let z&L(y). Then there exists a net (¢,) in T such that 2,—oco,
yta—=xtt,—z. It is not hard to show that ft,—»c0. Thus z&L(x). Let 2<L(z). Then there exists a
net (t,) in T such that f,—o0, xt,—=xtt ty=yt"1t,—z. Clearly, t't,—oo and so z&L(y). Hence
L(y)=L(z).

Theorem 3.6. Let f: (X, T)—(Y,T) be a homomorphism of transformation groups. For any point
z of X, f(L(z)) CL(f(x)).

Proof. Let y=f(L(z)). y=f(z) for some ze=L(z). There exists a net (¢,) in T such that f,—rco0,
zt,—z. f(xty) = f(@)t,—f(2) =y. Thus y=L(f(x)). Hence f(L(z))CL( f(z)).

4. Lagrange stability

Definition 4.1. Let (X,T) be a transformation group. A point = of X is said to be Lagrange

Theorem 4.2. Let (X,T) be a transformation group. If a point = of X is Lagrange stable, then
L(z) is nonempty.

Proof. Let (K,) be the family of all compact subsets of 7. We will prove that (zK,%) has the

. . . n s ” . . »n
finite intersection property ﬂl zK¢%, DNaKe,, DxﬁK‘m. Since T is noncompact, NK%.#¢. Thus
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[i zK¢;, #¢. Since zT is compact, NzK, = L(z) #4.

Corollary 4.3. Let (X,T) be a transformation group. Lf a point x of X is Lagrange stable, then
L(x) is compact.

Theorem 4.4, Let (X,T) be a iransformation group. If a point z of X is Lagrange stable, then
Jor each neighborhood U of L(z), there exists a compact subset K of T such thet zK°CU.

Proof. By theorem 4,2 L(x)#¢. Let (K,) be the family of all compact subsets of T with
the inclusion order. Suppose that there exists a neighborhood U of L(z) such that zK,CU
for all . For each a, there exists t,&K,* such that zt,& U. (xf,) is a net in z7. Since z7T is
compact, (z#,) has a convergent subnet. Let zt,—yezT. It is not hard to show that t,~»c0. Thus
yeL(z) and so U is a neighborhood of y. Since zf,—y, there exists @, such that zt,eU for all

a>a,. This is a contradiction. Hence the theorem holds.

Theorem 4.5. Let (X,T) be a transformation group whose phase space is locally compact. Given
a point x of X, if L(z) +¢ is compact and for each neighborhood U of L(x), there exisis a compact
subset K of T such that zK‘C U, then x is Lagrange stable.

Proof. Since X is locally connected and L(z) is compact, there exists a neighborhood U of L(x)
such that U is compact. By assumption, there exists a compact subset K of T such that zK‘cU.
zT=2zKUzKCzKUU, zTCzKJU=2K YU. zKUU is compact. Thus zT is compact.

Theorem 4.6, Let (X, T) be a transformation group whose phase spase is locally compact and phase
group is hemicompact. There exists a sequence (K,) of cempact subsets of T such that if K is any
compact subset of T, then KCKn, for some ny. Suppose that Kn® is connected for all n. Given a point
z of X, if L(x)+#¢ is compact, then = is Lagrange stable.

Proof. Suppose that therc exists a neighborhood U of L(z) such that zKa‘CU for all ». Since
X is locally compact and L(z) is compact, there exists a neighborhood V of L(z) such that VC U
and V is compact. For each 7, there exists ¢,&K»° such that zt,&U so that zt,6V. Since L(z)#¢,
there exists y=L(z). V is a neighborhood of y. For each n, since ye=zKn®, V{1zKn°=¢ so there
exists Sne=Kn¢ such that zSze V. For each n, since Kn° is connected, there exists r,e=Kna° such
that zr,=9V. (zr,) is a sequence in 9V, Since 9V is compact, (zr,) has a convergent subsquence.
Let zr,—zedV. It is not hard to show that r,~o0. Since z&L(@)CV, VNdV+¢ and this is a
contradiction. Thus for any neighborhood U of L(x), there exists #, such that zKn,<CU. By
theorem 4.5, z is Lagrange stable.

Theorem 4.7, Let (X,T) be a transformation group whose phase stace is first countable, phase
group is hemicompact. For all points z,y of X, y=L(x) if and only if there exists a sequence (t,)
in T such that t,—o0, xl,—y.

Proof. (=) Since T is hemicompact, there exists a sequence (Kn) of compact subsets of T such
that if K is any compact subset of 7, then KCKn, for some n,. We can assume that (Kzn) has the
inclusion order. Let (Um) be a countable basis at y with the reverse inclusion order. Define
(1, m) < (n, my)by ny<np, my<tmy.
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For each (n, m), Um NzKn‘#¢ so there exists ¢, . =EKn° such that ztu mesUm. Take
44==t(n m. It is not hard to show that t,—oc0 and zt,—y.
(&) By theorem 3.2, it is obvious.

Theorem 4.8. Let (X,T) be a transformation group whose phase spacel is locally compact, first
countable and phase group is hemicompact. There exists a sequence (Kn) of compact subsets of T such
that if K is any compact subset of T, then KCKn, for some n,. Suppose that Kn® is connected for
all n. If ze=X is Lagrange stable, then L(x) is connected.

Proof. Suppose that L(x) is disconnected. L(z) =AU B for some disjoint nonempty closed subsets
A, B of X. B° is a neighborhood of A. Since L(z) is compact, A is compact. Since X is locally
compact, there exists a neighborhood U of A such that U B¢ and U is compact. There exist a4,
b=B for A,B are nonempty. By theorem 4.7, there exist sequences (£,), (s») in T such that ¢,
500, xt,—a, r5—b. Since U is a neighborhood of a and Uc is a neighborhood of b, there exist
m, ko such that zt,=U, zs,€Uc for all m>mg, k>ko. For each n, there exist m(n), k(n) such
that ¢,, s,eK.,° for all m>m(n), k>k(n). Let |,=mazx (mo,ke,m(1), k(1)), Lipy=maz(G+1),k3GE+1),
L+1). Clealy, {| <<, tl, sheKs, at,eU, zs,U° for all i. For each i, since Kf is conn-
ected, there exists r, K¢ such that zr,,€0U. (zr;) is a sequence in @U. Since dU is compact,
(xr:) has a convergent subsequence. Let zr,—yeoU, yFAUB=L(z). It is not hard to show that
r;—oo. Thus yeL(z), this is a contradiction. Hence L(z) is connected.

Theorem 4.9, Let (X,T) be a transformation group. If a point x of X is Lagrange stable, then
any point y of L(z) is Lagrange stable.
Proof. Since y=L(2). yT CL(z). Thus yT is compact.

5. Poisson stability
Definition 5.1. Let (X,T) be a transformation group. A point x of X is said to be Poisson
stable if z=L(z).
It is not hard to show that the following three statements are equivalent
zeL(z), L(x)=zT, zTNL(z) #¢

Theorem 5.2, Let f: (X,T)—~(Y,T) be a homomorphism of transformation groups. If z=X is
Poisson stable, then f(z) is Poisson stable,
Proof. Since z=L(z), fla)efL(x))CL(f(z)).

Theorem 5.3, Let (X,T) be a transformation group. Suppose that X is first countable, T is
hemicompact and T acts freely on X. If z=X is not Poisson stable, then .: T—z T is a homeomorphism.

Proof. Clearly, ¢, is a continuous bijection. Let A be a closed subset of T. ¢,(A)=zA4. Let y
belong to the closure of zA in xT. Since X is first countable, there exists a sequence (¢,) in A such
that zt,—y. Since T is hemicompact, there exists a sequence (K,) of compact subsets of T such
that if K is any compact subset of 7, then KCKn, for some n,. Let us show that there exists n,
such that for each m, there exists my;>m such that t,,=Kn, Suppose that for each », there exists
mq such that t,=Kn¢ for all m>m,. It is not hard to show that ¢,—co. By theorem 3.2, yeL(z).
Thus yexTNL(z) and z=L(x). This is a contradiction for x is not Poisson stable. Take m;=1
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For each k, there exists muy;>m,4-1 such that ¢,,,.=Kn, () is a sequence in Kn,. Since Kn, is
compact, (¢n,) has a convergent subsequence. Let t,,—teKn,. Clearly, ztn,—zt. (tm,) is also a seq-
uence in A. Thus te=A=A and yt=zA. Since (xtm) is a subsequence of (zt,), Ttm—y, y=ztezA
for X is Hausdorff. Thus the closure of zA in zT contained in zA and so zA is a closed subset
of #T. Hence ¢, is continuous. Consequently, ¢, is a homeomorphism.

Let (X,T) be a transformation group. If z=X is not Poisson stable, then zTNL(z)=¢ by
definition. Since z7=2zTUL(z), L(z)=2T—xT. So L(z) =zT—zT. But if z is Poisson stable, this
does not hold in general.

Theorem 5.4. Let (X,T) be a transformation group. Suppose that X is locally compact, T is
hemicompact and T acts freely on X. If z=X is Poisson stable, then L(z) =zT—zT.

Proof. It is clear that z7—zTCL(x).

Let y=L(z). Given any neighborhood U of y, we will show that UN(L(x) —xT) #¢. Since X
is locally compact, there exists a neighborhood V of y such that VCU and V is compact. Since T
is hemicompact, there exists a sequence (K,) of compact subsets of T such that if K is any compact

subset of 7, then KcXK,, for some 2, It is not hard to show that L(z)= fjlxK,.c. VNzK +#¢.

Thus there exists t,eK,® such that zt,=y,&V. Since T acts freely on X, zK;NzK\*=¢ so
y»&zK;. Thus VN (zK,)¢ is a neighborhood of y,. There exists a neighborhood V; of ¥, such that
V.CVN (@K« Since y,=zt,=zxTC zT=L(z), ViNzK,S #¢ so there exists t,= K, such that z¢,=
y,&V;. Since zK,NzK;*=¢, yFxK,. So Vi (xK,)* is a neighborhood of y,;. There exists a
neighborhood V, of y; such that ¥V, Vi (@K,)°. We proceed in this way repeatedly. Clearly

V.NzK. %¢ for all 2, and V, DV, NzKDV,NzK;D--. Since ¥V is compact, ¢¢é V.NzK.,°

cAV.NzKD) = FIIV,,D ﬁ; K= ﬁl V.NL{z) so there exists z& EIV,DL(z). Since zeV,CVCU
n=] n= n= n=

n=

and V,NzK,=¢, 2&2K;. Thus 2tz T. Therefore z&UN (L(z)—zT). This means that ye=L(z) -z 1.
Consequently, L(z) = z7—=zT.
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