• Title/Summary/Keyword: Lagrange stability

Search Result 72, Processing Time 0.02 seconds

ORTHOGONAL STABILITY OF AN EULER-LAGRANGE-JENSEN (a, b)-CUBIC FUNCTIONAL EQUATION

  • Pasupathi, Narasimman;Rassias, John Michael;Lee, Jung Rye;Shim, Eun Hwa
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.189-199
    • /
    • 2022
  • In this paper, we introduce a new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation and obtain its general solution. Furthermore, we prove the Hyers-Ulam stability of the new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation in orthogonality normed spaces.

MULTI-JENSEN AND MULTI-EULER-LAGRANGE ADDITIVE MAPPINGS

  • Abasalt Bodaghi;Amir Sahami
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.673-692
    • /
    • 2024
  • In this work, an alternative fashion of the multi-Jensen is introduced. The structures of the multi-Jensen and the multi-Euler-Lagrange-Jensen mappings are described. In other words, the system of n equations defining each of the mentioned mappings is unified as a single equation. Furthermore, by applying a fixed point theorem, the Hyers-Ulam stability for the multi-Euler-Lagrange-Jensen mappings in the setting of Banach spaces is established. An appropriate counterexample is supplied to invalidate the results in the case of singularity for multiadditive mappings.

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

APPROXIMATION OF ALMOST EULER-LAGRANGE QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS

  • John Michael Rassias;Hark-Mahn Kim;Eunyoung Son
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.87-97
    • /
    • 2024
  • For any fixed integers k, l with kl(l - 1) ≠ 0, we establish the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation f(kx + ly) + f(kx - ly) + 2(l - 1)[k2f(x) - lf(y)] = l[f(kx + y) + f(kx - y)] in normed spaces and in non-Archimedean spaces, respectively.

APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH

  • Moradlou, Fridoun
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.319-333
    • /
    • 2013
  • Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces: $${\sum_{1{\leq}i_<j{\leq}n}}\;f(\frac{r_ix_i+r_jx_j}{k})=\frac{n-1}{k}{\sum_{i=1}^n}r_if(x_i)$$.