• 제목/요약/키워드: Jacobi operator

검색결과 61건 처리시간 0.022초

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

ON THE SPECTRAL GEOMETRY FOR THE JACOBI OPERATORS OF HARMONIC MAPS INTO PRODUCT MANIFOLDS

  • Kang, Tae-Ho;Ki, U-Hang;Pak, Jin-Suk
    • 대한수학회지
    • /
    • 제34권2호
    • /
    • pp.483-500
    • /
    • 1997
  • We investigate the geometric properties reflected by the spectra of the Jacobi operator of a harmonic map when the target manifold is a Riemannian product manifold or a Kaehlerian product manifold. And also we study the spectral characterization of Riemannian sumersions when the target manifold is $S^n \times S^n$ or $CP^n \times CP^n$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM WITH 𝜉-PARALLEL STRUCTURE JACOBI OPERATOR

  • U-Hang KI;Hyunjung SONG
    • East Asian mathematical journal
    • /
    • 제40권1호
    • /
    • pp.1-23
    • /
    • 2024
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c). We denote by A, K and L the second fundamental forms with respect to the unit normal vector C, D and E respectively, where C is the distinguished normal vector, and by R𝜉 = R(𝜉, ·)𝜉 the structure Jacobi operator. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y , and at the same time R𝜉K = KR𝜉 and ∇𝜙𝜉𝜉R𝜉 = 0. In this paper, we prove that if it satisfies ∇𝜉R𝜉 = 0 on M, then M is a real hypersurface of type (A) in Mn(c) provided that the scalar curvature $\bar{r}$ of M holds $\bar{r}-2(n-1)c{\leq}0$.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, In-Bae;Lim, Dong-Ho
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.1-15
    • /
    • 2010
  • Let M be a real hypersurface with almost contact metric structure $(\phi,g,\xi,\eta)$ in a complex space form $M_n(c)$, $c\neq0$. In this paper we prove that if $R_{\xi}L_{\xi}g=0$ holds on M, then M is a Hopf hypersurface in $M_n(c)$, where $R_{\xi}$ and $L_{\xi}$ denote the structure Jacobi operator and the operator of the Lie derivative with respect to the structure vector field $\xi$ respectively. We characterize such Hopf hypersurfaces of $M_n(c)$.