KYUNGPOOK Math. J. 56(2016), 541-575 http://dx.doi.org/10.5666/KMJ.2016.56.2.541 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

U-HANG KI

The National Academy of Siences, Seoul 06579, Korea

 $e ext{-}mail: \mathtt{uhangki2005@naver.com}$

Soo Jin Kim

Department of Mathematics Chosun University, Gwangju 61452, Korea

 $e ext{-}mail: eel2372@naver.com}$

HIROYUKI KURIHARA*

The College of Education, Ibaraki University, Mito 310-8512, Japan

e-mail: hiroyuki.kurihara.math@vc.ibaraki.ac.jp

ABSTRACT. Let M be a real hypersurface of a complex space form with almost contact metric structure (ϕ, ξ, η, g) . In this paper, we prove that if the structure Jacobi operator $R_{\xi} = R(\cdot, \xi)\xi$ is $\phi \nabla_{\xi} \xi$ -parallel and R_{ξ} commute with the structure tensor ϕ , then M is a homogeneous real hypersurface of Type A provided that $\text{Tr} R_{\xi}$ is constant.

1. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature $4c \neq 0$ is called a complex space form, which is denoted by $M_n(c)$. So naturally there exists a Kähler structure J and Kähler metric \tilde{g} on $M_n(c)$. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_n(\mathbb{C})$, or complex hyperbolic space $H_n(\mathbb{C})$ as c > 0 or c < 0. Now let us consider a real hypersurface M in $M_n(c)$. Then we also denote by g the induced Riemannian metric of M and by N a local unit normal vector field of M in $M_n(c)$. Further, A denotes by the shape operator of M in $M_n(c)$. Then, an almost contact metric structure (ϕ, ξ, η, g) of M is naturally induced from the

Received August 18, 2015; accepted January 19, 2016.

2010 Mathematics Subject Classification: 53B20, 53C15, 53C25.

Key words and phrases: complex space form, real hypersurface, structure Jacobi operator, structure tensor, Ricci tensor.

^{*} Corresponding Author.

Kähler structure of $M_n(c)$ as follows:

$$\phi X = (JX)^T, \ \xi = -JN, \ \eta(X) = g(X, \xi), X \in TM,$$

where TM denotes the tangent bundle of M and $()^T$ the tangential component of a vector. The Reeb vector ξ is said to be *principal* if $A\xi = \alpha \xi$, where $\alpha = \eta(A\xi)$. A real hypersurface is said to a Hopf hypersurface if the Reeb vector ξ of M is principal. Hopf hypersurfaces is realized as tubes over certain submanifolds in $P_n\mathbb{C}$, by using its focal map (see Cecil and Ryan [2]). By making use of those results and the mentioned work of Takagi ([17], [18]), Kimura [11] proved the local classification theorem for Hopf hypersurfaces of $P_n\mathbb{C}$ whose all principal curvatures are constant. For the case $H_n\mathbb{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi's list or Berndt's list, a particular type of tubes over totally geodesic $P_k\mathbb{C}$ or $H_k\mathbb{C}$ $(0 \le k \le n-1)$ adding a horosphere in $H_n\mathbb{C}$, which is called type A, has a lot of nice geometric properties. For example, Okumura [13] (resp. Montiel and Romero [12]) showed that a real hypersurface in $P_n\mathbb{C}$ (resp. $H_n\mathbb{C}$) is locally congruent to one of real hypersurfaces of type A if and only if the Reeb flow ξ is isometric or equivalently the structure operator ϕ commutes with the shape operator A.

The Reeb vector field ξ plays an important role in the theory of real hypersurfaces in a complex space form $M_n(c)$. Related to the Reeb vector field ξ the Jacobi operator R_{ξ} defined by $R_{\xi} = R(\cdot, \xi)\xi$ for the curvature tensor R on a real hypersurface M in $M_n(c)$ is said to be a structure Jacobi operator on M. The structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho and first author started the study on real hypersurfaces in complex space form by using the operator R_{ξ} . In particular the structure Jacobi operator has been studied under the various commutative conditions ([4], [5], [7], [16]). For example, Pérez et al. [16] called that real hypersurfaces M has commuting structure Jacobi operator if $R_{\xi}R_X = R_XR_{\xi}$ for any vector field X on M, and proved that there exist no real hypersurfaces in $M_n(c)$ with commuting structure Jacobi operator. On the other hand Ortega et al. [14] have proved that there are no real hypersurfaces in $M_n(c)$ with parallel structure Jacobi operator R_{ξ} , that is, $\nabla_X R_{\xi} = 0$ for any vector field X on M. More generally, such a result has been extended by [15]. In this situation, if naturally leads us to be consider another condition weaker than parallelness. In the preceding work, we investigate the weaker condition ξ -parallelness, that is, $\nabla_{\xi} R_{\xi} = 0$ (cf. [4], [7], [8]). Moreover some works have studied several conditions on the structure Jacobi operator R_{ξ} ([3], [5], [7] and [8]). The following facts are used in this paper without proof.

Theorem 1.1. (Ki, Kim and Lim [5]) Let M be a real hypersurface in a nonflat complex space form $M_n(c)$, $c \neq 0$ which satisfies $R_{\xi}(A\phi - \phi A) = 0$. Then M is a Hopf hypersurface in $M_n(c)$. Further, M is locally congruent to one of the following hypersurfaces:

(I) In cases that $M_n(c) = P_n \mathbb{C}$ with $\eta(A\xi) \neq 0$,

- (A₁) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$;
- (A₂) a tube of radius r over a totally geodesic $P_k\mathbb{C}$ for some $k \in \{1, \ldots, n-2\}$, where $0 < r < \pi/2$ and $r \neq \pi/4$.
- (II) In cases $M_n(c) = H_n\mathbb{C}$,
 - (A_0) a horosphere;
 - (A₁) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1}\mathbb{C}$;
 - (A_2) a tube over a totally geodesic $H_k\mathbb{C}$ for some $k \in \{1, \ldots, n-2\}$.

Theorem 1.2. (Ki, Nagai and Takagi [9]) Let M be a real hypersurface in a nonflat complex space form $M_n(c), c \neq 0$ If M satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R_{\xi}S = SR_{\xi}$. Then M is the same types as those in Theorem 1.1, where S denotes the Ricci tensor of M.

In [6], the authors started the study on real hypersurfaces in a complex space form with $\phi \nabla_{\xi} \xi$ -parallel structure Jacobi operator R_{ξ} , that is, $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi} = 0$ for the vector $\phi \nabla_{\xi} \xi$ orthogonal to ξ . In this paper we invetigate the structure Jacobi operator is $\phi \nabla_{\xi} \xi$ -parallel under the condition that the structure Jacobi operator commute with the structure tensor ϕ . We prove that if the structure Jacobi operator R_{ξ} is $\phi \nabla_{\xi} \xi$ -parallel and R_{ξ} commute with the structure tensor ϕ , then M is homogeneous real hypersurfaces of Type A provided that $\operatorname{Tr} R_{\xi}$ is constant.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_n(c), c \neq 0$ with almost complex structure J, and N be a unit normal vector field on M. The Riemannian connection $\tilde{\nabla}$ in $M_n(c)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M:

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \tilde{\nabla}_X N = -AX$$

where g denotes the Riemannian metric of M induced from that of $M_n(c)$ and A denotes the shape operator of M in direction N. For any vector field X tangent to M, we put

$$JX = \phi X + \eta(X)N, \quad JN = -\xi.$$

We call ξ the structure vector field (or the Reeb vector field) and its flow also denoted by the same latter ξ . The Reeb vector field ξ is said to be principal if $A\xi = \alpha \xi$, where $\alpha = \eta(A\xi)$.

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field ξ is principal. It is known that the aggregate (ϕ, ξ, η, g) is an almost contact metric

structure on M, that is, we have

$$\begin{split} \phi^2 X &= -X + \eta(X)\xi, \ g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y), \\ \eta(\xi) &= 1, \ \phi \xi = 0, \ \eta(X) = g(X,\xi) \end{split}$$

for any vector fields X and Y on M. From Kähler condition $\tilde{\nabla}J = 0$, and taking account of above equations, we see that

$$(2.1) \nabla_X \xi = \phi A X,$$

(2.2)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi$$

for any vector fields X and Y tangent to M.

Since we consider that the ambient space is of constant holomorphic sectional curvature 4c, equations of Gauss and Codazzi are respectively given by

(2.3)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$

$$(2.4) \qquad (\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}$$

for any vector fields X,Y and Z on M, where R denotes the Riemannian curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote by $\alpha = \eta(A\xi)$, $\beta = \eta(A^2\xi)$ and h = TrA, and for a function f we denote by ∇f the gradient vector field of f.

From the Gauss equation (2.3), the Ricci tensor S of M is given by

$$(2.5) SX = c\{(2n+1)X - 3\eta(X)\xi\} + hAX - A^2X$$

for any vector field X on M.

Now, we put

$$(2.6) A\xi = \alpha \xi + \mu W,$$

where W is a unit vector field orthogonal to ξ . In the sequel, we put $U = \nabla_{\xi} \xi$, then by (2.1) we see that

$$(2.7) U = \mu \phi W$$

and hence U is orthogonal to W. So we have $g(U,U)=\mu^2$. Using (2.7), it is clear that

$$\phi U = -A\xi + \alpha \xi,$$

which shows that $g(U,U) = \beta - \alpha^2$. Thus it is seen that

$$\mu^2 = \beta - \alpha^2.$$

Making use of (2.1), (2.7) and (2.8), it is verified that

(2.10)
$$\mu g(\nabla_X W, \xi) = g(AU, X),$$

$$(2.11) g(\nabla_X \xi, U) = \mu g(AW, X)$$

because W is orthogonal to ξ .

Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we find

$$(2.12) \qquad (\nabla_X A)\xi = -\phi \nabla_X U + g(AU + \nabla \alpha, X)\xi - A\phi AX + \alpha \phi AX,$$

which together with (2.4) implies that

$$(2.13) \qquad (\nabla_{\xi} A)\xi = 2AU + \nabla \alpha.$$

Applying (2.12) by ϕ and making use of (2.11), we obtain

(2.14)
$$\phi(\nabla_X A)\xi = \nabla_X U + \mu g(AW, X)\xi - \phi A\phi AX - \alpha AX + \alpha g(A\xi, X)\xi,$$

which connected to (2.1), (2.9) and (2.13) gives

(2.15)
$$\nabla_{\xi} U = 3\phi A U + \alpha A \xi - \beta \xi + \phi \nabla \alpha.$$

Using (2.3), the structure Jacobi operator R_{ξ} is given by

(2.16)
$$R_{\xi}(X) = R(X, \xi)\xi = c\{X - \eta(X)\xi\} + \alpha AX - \eta(AX)A\xi$$

for any vector field X on M. Differentiating this covariantly along M, we find

$$g((\nabla_X R_{\xi})Y, Z) = g(\nabla_X (R_{\xi}Y) - R_{\xi}(\nabla_X Y), Z)$$

$$= -c(\eta(Z)g(\nabla_X \xi, Y) + \eta(Y)g(\nabla_X \xi, Z))$$

$$+(X\alpha)g(AY, Z) + \alpha g((\nabla_X A)Y, Z)$$

$$-\eta(AZ)\{g((\nabla_X A)\xi, Y) + g(A\phi AX, Y)\}$$

$$-\eta(AY)\{g((\nabla_X A)\xi, Z) + g(A\phi AX, Z)\}.$$

From (2.5) and (2.16), we have

(2.18)
$$(R_{\xi}S - SR_{\xi})(X) = -\eta(AX)A^{3}\xi + \eta(A^{3}X)A\xi - \eta(A^{2}X)(hA\xi - c\xi) + (h\eta(AX) - c\eta(X))A^{2}\xi - ch(\eta(AX)\xi - \eta(X)A\xi).$$

Let Ω be the open subset of M defined by

$$\Omega = \{ p \in M; A\xi - \alpha\xi \neq 0 \}.$$

At each point of Ω , the Reeb vector field ξ is not principal. That is, ξ is not an eigenvector of the shape operator A of M if $\Omega \neq \emptyset$.

In what follows we assume that Ω is not an empty set in order to prove our main theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns the set Ω .

3. Real Hypersurfaces Satisfying $R_{\xi}\phi = \phi R_{\xi}$

Let M be a real hypersurface in $M_n(c), c \neq 0$. We suppose that $R_{\xi}\phi = \phi R_{\xi}$. Then by using (2.16) we have

(3.1)
$$\alpha(\phi AX - A\phi X) = g(A\xi, X)U + g(U, X)A\xi.$$

Then, using (3.1), it is clear that $\alpha \neq 0$ on Ω . So a function λ given by $\beta = \alpha \lambda$ is defined. Because of (2.9), we have

$$\mu^2 = \alpha \lambda - \alpha^2.$$

Replacing X by U in (3.1) and taking account of (2.8), we find

$$\phi AU = \lambda A\xi - A^2\xi,$$

which implies

$$\phi A^2 \xi = AU + \lambda U$$

because U is orthogonal to $A\xi$. From this and (2.6) we have

(3.5)
$$\mu \phi AW = AU + (\lambda - \alpha)U,$$

which together with (2.7) yields

$$(3.6) g(AW, U) = 0.$$

Using (2.6) and (3.3), we can write (2.15) as

(3.7)
$$\nabla_{\xi} U = (3\lambda - 2\alpha)A\xi - 3\mu AW - \alpha\lambda\xi + \phi\nabla\alpha.$$

Since $\alpha \neq 0$ on Ω , (3.1) reformed as

(3.8)
$$(\phi A - A\phi)X = \eta(X)U + u(X)\xi + \tau(u(X)W + w(X)U),$$

where a 1-form u is defined by u(X) = g(U, X) and w by w(X) = g(W, X), where we put

(3.9)
$$\alpha \tau = \mu, \ \lambda - \alpha = \mu \tau.$$

Differentiating (3.8) covariantly and taking the inner product with any vector field Z, we find

$$g(\phi(\nabla_{Y}A)X, Z) + g(\phi(\nabla_{Y}A)Z, X)$$

$$= -\eta(AX)g(AY, Z) - g(AX, Y)\eta(AZ)$$

$$+g(A^{2}X, Y)\eta(Z) + \eta(X)g(A^{2}Y, Z)$$

$$+(\eta(X) + \tau w(X))g(\nabla_{Y}U, Z)$$

$$+g(\nabla_{Y}U, X)(\eta(Z) + \tau w(Z))$$

$$+u(X)g(\nabla_{Y}\xi, Z) + g(\nabla_{Y}\xi, X)u(Z)$$

$$+(Y\tau)(u(X)w(Z) + u(Z)w(X))$$

$$+\tau(u(X)g(\nabla_{Y}W, Z) + g(\nabla_{Y}W, X)u(Z))$$

because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect to X and Y, and making use of the Codazzi equation (2.4), we find (3.11)

$$\begin{split} c(\eta(X)g(Y,Z) - \eta(Y)g(X,Z)) + g((\nabla_X A)\phi Y, Z) - g((\nabla_Y A)\phi X, Z) \\ &= -\eta(AX)g(AY,Z) + \eta(AY)g(AX,Z) + \eta(X)g(A^2Y,Z) - \eta(Y)g(A^2X,Z) \\ &+ (\eta(X) + \tau w(X))g(\nabla_Y U, Z) - (\eta(Y) + \tau w(Y))g(\nabla_X U, Z) \\ &+ (g(\nabla_Y U, X) - g(\nabla_X U, Y))(\eta(Z) + \tau w(Z)) \\ &+ u(X)g(\nabla_Y \xi, Z) - u(Y)g(\nabla_X \xi, Z) + (g(\nabla_Y \xi, X) - g(\nabla_X \xi, Y))u(Z) \\ &+ (Y\tau)(u(X)w(Z) + u(Z)w(X)) - (X\tau)(u(Y)w(Z) + u(Z)w(Y)) \\ &+ \tau \{u(X)g(\nabla_Y W, Z) - u(Y)g(\nabla_X W, Z)\} \\ &+ \tau \{(g(\nabla_Y W, X) - g(\nabla_X W, Y))u(Z)\}. \end{split}$$

Interchanging Y and Z in (3.10), we obtain

$$\begin{split} g(\phi(\nabla_Z A)X,Y) + g(\phi(\nabla_Z A)Y,X) \\ &= -\eta(AX)g(AY,Z) - g(AX,Z)\eta(AY) \\ &+ g(A^2X,Z)\eta(Y) + \eta(X)g(A^2Y,Z) + (\eta(X) + \tau w(X))g(\nabla_Z U,Y) \\ &+ g(\nabla_Z U,X)(\eta(Y) + \tau w(Y)) + u(X)g(\nabla_Z \xi,Y) + g(\nabla_Z \xi,X)u(Y) \\ &+ (Z\tau)(u(X)w(Y) + u(Y)w(X)) + \tau(u(X)g(\nabla_Z W,Y) + g(\nabla_Z W,X)u(Y)), \end{split}$$

or, using (2.4)

$$\begin{split} g(\phi(\nabla_X A)Z,Y) + g(\phi(\nabla_Y A)Z,X) + c(\eta(X)g(Z,Y) + \eta(Y)g(Z,X) - 2\eta(Z)g(X,Y)) \\ &= -\eta(AX)g(AY,Z) - g(AX,Z)\eta(AY) + g(A^2X,Z)\eta(Y) + \eta(X)g(A^2Y,Z) \\ &+ (\eta(X) + \tau w(X))g(\nabla_Z U,Y) + g(\nabla_Z U,X)(\eta(Y) + \tau w(Y)) \\ &+ u(X)g(\nabla_Z \xi,Y) + g(\nabla_Z \xi,X)u(Y) \\ &+ (Z\tau)(u(X)w(Y) + u(Y)w(X)) + \tau(u(X)g(\nabla_Z W,Y) + g(\nabla_Z W,X)u(Y)). \end{split}$$

Combining this to (3.11), we have

$$\begin{aligned} 2g((\nabla_{Y}A)\phi X,Z) + 2c(\eta(Z)g(X,Y) - \eta(X)g(Y,Z)) \\ + 2\eta(X)g(A^{2}Z,Y) - 2\eta(AX)g(AZ,Y) \\ + (g(\nabla_{Z}U,X) - g(\nabla_{X}U,Z))(\eta(Y) + \tau w(Y)) \\ + (g(\nabla_{Y}U,X) - g(\nabla_{X}U,Y))(\eta(Z) + \tau w(Z)) \\ + (g(\nabla_{Z}U,Y) + g(\nabla_{Y}U,Z))(\eta(X) + \tau w(X)) \\ (3.12) & + (g(\nabla_{Z}\xi,X) - g(\nabla_{X}\xi,Z))u(Y) + (g(\nabla_{Y}\xi,X) - g(\nabla_{X}\xi,Y))u(Z) \\ + (g(\nabla_{Z}\xi,Y) + g(\nabla_{Y}\xi,Z))u(X) + (Y\tau)(u(X)w(Z) + u(Z)w(X)) \\ + (Z\tau)(u(X)w(Y) + u(Y)w(X)) - (X\tau)(u(Y)w(Z) + u(Z)w(Y)) \\ + \tau\{u(X)(g(\nabla_{Z}W,Y) + g(\nabla_{Y}W,Z)) \\ + u(Z)(g(\nabla_{X}W,Y) - g(\nabla_{Y}W,X)) \\ + u(Y)(g(\nabla_{Z}W,X) - g(\nabla_{X}W,Z))\} = 0. \end{aligned}$$

If we put $X = \xi$ in (3.12), then we have

$$g(\nabla_{Y}U, Z) + g(\nabla_{Z}U, Y) + 2c(\eta(Z)\eta(Y) - g(Z, Y))$$

$$+2g(A^{2}Y, Z) - 2\alpha g(AY, Z) - du(\xi, Z)(\eta(Y) + \tau w(Y))$$

$$-du(\xi, Y)(\eta(Z) + \tau w(Z)) - 2u(Y)u(Z)$$

$$-(\xi \tau)(u(Y)w(Z) + u(Z)w(Y))$$

$$-\tau \{u(Z)dw(\xi, Y) + u(Y)dw(\xi, Z)\} = 0,$$

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying $R_{\xi}\phi = \phi R_{\xi}$ and $\nabla_{\phi\nabla_{\xi}\xi}R_{\xi} = 0$

We will continue our discussions under the same hypothesis $R_{\xi}\phi = \phi R_{\xi}$ as in Section 3. Furthermore, suppose that $\nabla_{\phi\nabla_{\xi}\xi}R_{\xi} = 0$ and then $\nabla_{W}R_{\xi} = 0$ since we assume that $\mu \neq 0$. Replacing X by W in (2.17), we find

$$(W\alpha)g(AY,Z) - c(\eta(Z)g(\phi AW,Y) + \eta(Y)g(\phi AW,Z)) + \alpha g((\nabla_W A)Y,Z) - \eta(AZ)\{g((\nabla_W A)\xi,Y) + g(A\phi AW,Y)\} - \eta(AY)\{g((\nabla_W A)\xi,Z) + g(A\phi AW,Z)\} = 0$$

by virtue of $\nabla_W R_{\xi} = 0$. Putting $Y = \xi$ in this and making use of (2.13) and (3.6), we obtain

$$(4.2) \alpha A\phi AW + c\phi AW = 0$$

because U and W are mutually orthogonal. From this and (2.16), it is seen that $R_{\xi}\phi AW=0$ by virtue of (3.6), and hence $R_{\xi}AW=0$ which together with (2.16) implies that

(4.3)
$$\alpha A^2 W = -cAW + c\mu \xi + \mu(\alpha + g(AW, W))A\xi,$$

which tells us that

(4.4)
$$\alpha g(A^2W, W) = (\mu^2 - c)g(AW, W) + \alpha \mu^2.$$

Since $\alpha \neq 0$, $\beta = \alpha \lambda$ and (3.2), we see that

$$(4.5) g(A^2W, W) = \left(\lambda - \alpha - \frac{c}{\alpha}\right)g(AW, W) + \mu^2.$$

Combining (3.5) to (4.2), we get

(4.6)
$$\alpha A^2 U = -(\mu^2 + c)AU - c(\lambda - \alpha)U.$$

If we apply μW to (3.3) and make use of (2.6), then we find

(4.7)
$$g(AU, U) = \mu^2(g(AW, W) + \alpha - \lambda).$$

Using (4.2), we see from (4.1)

$$\alpha(\nabla_W A)X = -(W\alpha)AX + \eta(AX)(\nabla_W A)\xi + g((\nabla_W A)\xi, X)A\xi$$
$$-\frac{c}{\alpha}\mu(w(X)\phi AW + g(\phi AW, X)W)$$

for any vector field X, which together with (3.5) yields

(4.8)
$$\alpha(\nabla_W A)X = -(W\alpha)AX + \eta(AX)(\nabla_W A)\xi + g((\nabla_W A)\xi, X)A\xi - \frac{c}{\alpha}\{w(X)AU + u(AX)W + (\lambda - \alpha)(w(X)U + u(X)W)\}.$$

Now, if we put X = W in (2.12), and make use of (3.5) and (4.2), then we find

$$(4.9) \qquad (\nabla_W A)\xi = -\phi \nabla_W U + (W\alpha)\xi + \frac{1}{\mu} \left(\alpha + \frac{c}{\alpha}\right) \{AU + (\lambda - \alpha)U\}.$$

Also, if we take the inner product (2.12) with $A\xi$ and take account of (2.6), (3.2) and (3.4), then we obtain

$$\alpha(X\alpha) + \mu(X\mu) = g(\alpha\xi + \mu W, (\nabla_X A)\xi) - g(A^2U + \lambda AU, X),$$

which together with (2.4), (2.13) and (4.6) yields

(4.10)
$$\mu(\nabla_W A)\xi = -\left(\alpha + \frac{c}{\alpha}\right)AU - \frac{c}{\alpha}(\lambda + \alpha)U + \mu\nabla\mu.$$

If we take the inner product (4.10) with ξ and make use of (2.13) and (3.6), then we find

$$(4.11) W\alpha = \xi \mu.$$

Using (4.10), we can write (4.8) as

$$(4.12) \qquad \alpha(\nabla_{W}A)X + (W\alpha)AX$$

$$+ \frac{1}{\mu}\eta(AX)\left\{\left(\alpha + \frac{c}{\alpha}\right)AU + \frac{c}{\alpha}(\lambda + \alpha)U - \mu\nabla\mu\right\}$$

$$+ \frac{1}{\mu}\left\{\left(\alpha + \frac{c}{\alpha}\right)u(AX) + \frac{c}{\alpha}(\lambda + \alpha)u(X) - \mu(X\mu)\right\}A\xi$$

$$+ \frac{c}{\alpha}\left\{w(X)AU + u(AX)W + (\lambda - \alpha)(w(X)U + u(X)W)\right\} = 0.$$

Putting X = W in this, we get

$$(4.13) \quad \alpha(\nabla_W A)W + (W\alpha)AW - (W\mu)A\xi + \left(\alpha + \frac{2c}{\alpha}\right)AU + \frac{2c\lambda}{\alpha}U - \mu\nabla\mu = 0.$$

Combining (4.9) to (4.10), we obtain

$$\mu\phi\nabla_W U - \mu(W\alpha)\xi + \mu\nabla\mu = 2\left(\alpha + \frac{c}{\alpha}\right)AU + \left(\mu^2 + \frac{2c}{\alpha}\lambda\right)U.$$

If we apply ϕ to this and make use of (2.8), (2.11) and (3.3), then we find

$$-\mu \nabla_W U - \mu^2 g(AW, W)\xi + \mu \phi \nabla \mu$$

= $2\left(\alpha + \frac{c}{\alpha}\right) (\lambda A\xi - A^2 \xi) - \mu \left(\mu^2 + \frac{2c}{\alpha}\lambda\right) W$,

which together with (2.6) yields

(4.14)
$$\mu \nabla_W U = \mu \phi \nabla \mu + (2c - \mu^2) A \xi + 2\mu \left(\alpha + \frac{c}{\alpha}\right) A W - (\alpha \mu^2 + 2c\lambda + \mu^2 g(AW, W)) \xi.$$

Now, we can take a orthonormal frame field $\{e_0 = \xi, e_1 = W, e_2, \dots, e_n, e_{n+1} = \phi e_1 = (1/\mu)U, e_{n+2} = \phi e_2, \dots, e_{2n} = \phi e_n\}$ of M. Differentiating (2.6) covariantly and making use of (2.1), we find

(4.15)
$$(\nabla_X A)\xi + A\phi AX = (X\alpha)\xi + \alpha\phi AX + (X\mu)W + \mu\nabla_X W,$$

which implies

(4.16)
$$\mu \text{div} W = \mu \sum_{i=0}^{2n} g(\nabla_{e_i} W, e_i) = \xi h - \xi \alpha - W \mu.$$

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we have

$$(4.17) \begin{array}{l} -2cg(\phi X,Y)+2g(A\phi AX,Y)\\ =(X\alpha)\eta(Y)-(Y\alpha)\eta(X)+\alpha g((\phi A+A\phi)X,Y)\\ +(X\mu)w(Y)-(Y\mu)w(X)\\ +\mu(g(\nabla_X W,Y)-g(\nabla_Y W,X)). \end{array}$$

Putting $X = \xi$ in this and using (2.10) and (4.11), we have

(4.18)
$$\mu \nabla_{\xi} W = 3AU - \alpha U + \nabla \alpha - (\xi \alpha) \xi - (W \alpha) W.$$

Putting $X = \mu W$ in (4.15) and taking account of (4.10), we get

$$-\left(\alpha + \frac{c}{\alpha}\right)AU - \frac{c}{\alpha}(\lambda + \alpha)U + \mu\nabla\mu + \mu A\phi AW$$
$$= \mu(W\alpha)\xi + \mu(W\mu)W + \mu\alpha\phi AW + \mu^2\nabla_W W,$$

or, using (3.5) and (4.2),

$$(4.19) \ \mu^2 \nabla_W W = -2 \left(\alpha + \frac{c}{\alpha} \right) AU - \left(\mu^2 + \frac{2c}{\alpha} \lambda \right) U + \mu \nabla \mu - \mu(W\alpha) \xi - \mu(W\mu) W.$$

Now, putting X=U in (4.17) and making use of (2.6) and (3.3), we have

$$\mu(g(\nabla_U W, Y) - g(\nabla_Y W, U))$$

$$= (2c\mu - U\mu)w(Y) - (U\alpha)\eta(Y)$$

$$+ \mu^2 \eta(AY) + 2\lambda \mu w(AY) - 2\mu w(A^2Y),$$

which together with (4.3) gives

(4.20)
$$\mu dw(U,Y) = (2c\mu - U\mu)w(Y) - \{U\alpha + 2c(\lambda - \alpha)\}\eta(Y) - \{\mu^2 + 2(\lambda - \alpha)g(AW, W)\}\eta(AY) + 2\mu\left(\lambda + \frac{c}{\alpha}\right)w(AY).$$

Because of (2.10) and (4.18), it is verified that

Using (2.11) and (3.7), we obtain

$$(4.22) du(\xi, X) = (3\lambda - 2\alpha)\eta(AX) - 2\mu w(AX) - \alpha\lambda\eta(X) + q(\phi\nabla\alpha, X).$$

Using above two equations, (3.13) is reduced to

$$g(\nabla_{X}U,Y) + g(\nabla_{Y}U,X))$$

$$= 2c(g(X,Y) - \eta(X)\eta(Y)) - 2g(A^{2}X,Y) + 2\alpha g(AX,Y)$$

$$+(\xi\tau)(u(X)w(Y) + u(Y)w(X))$$

$$+\frac{1}{\alpha}(2u(AX) + X\alpha - (\xi\alpha)\eta(X) - (W\alpha)w(X))u(Y)$$

$$+\frac{1}{\alpha}(2u(AY) + Y\alpha - (\xi\alpha)\eta(Y) - (W\alpha)w(Y))u(X)$$

$$+\{(3\lambda - 2\alpha)\eta(AX) - 2\mu w(AX)$$

$$-\alpha\lambda\eta(X) + g(\phi\nabla\alpha, X)\}(\eta(Y) + \tau w(Y))$$

$$+\{(3\lambda - 2\alpha)\eta(AY) - 2\mu w(AY)$$

$$-\alpha\lambda\eta(Y) + g(\phi\nabla\alpha, Y)\}(\eta(X) + \tau w(X)),$$

where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we find

(4.24)
$$\operatorname{div} U = 2c(n-1) + \alpha h - \operatorname{Tr} A^2 + \lambda(\lambda - \alpha).$$

Replacing X by U in (4.23) and using (4.6) and (4.7), we find

$$g(\nabla_U U, Y) + g(\nabla_Y U, U)$$

$$= (\lambda - \alpha)(Y\alpha) + 2\left(2\lambda - \alpha + \frac{c}{\alpha}\right)u(AY)$$

$$+ \left\{\frac{U\alpha}{\alpha} + \frac{2c\lambda}{\alpha} + 2(\lambda - \alpha)(g(AW, W) + \alpha - \lambda)\right\}u(Y)$$

$$+ \left\{\mu(W\alpha) - (\lambda - \alpha)\xi\alpha\right\}\eta(Y) + \mu^2(\xi\tau)w(Y).$$

Since $g(\nabla_X U, U) = \mu(X\mu)$, it follows that

$$du(U,X) = -2\mu(X\mu) + (\lambda - \alpha)(X\alpha) + 2\left(2\lambda - \alpha + \frac{c}{\alpha}\right)u(AX)$$

$$+ \left\{\frac{U\alpha}{\alpha} + \frac{2c\lambda}{\alpha} + 2(\lambda - \alpha)(g(AW, W) + \alpha - \lambda)\right\}u(X)$$

$$+ \{\mu(W\alpha) - (\lambda - \alpha)\xi\alpha\}\eta(X) + \mu^{2}(\xi\tau)w(X),$$

which implies that

4.

$$(4.26) du(U,W) = -2\mu(W\mu) + (\lambda - \alpha)W\alpha + \mu^2(\xi\tau).$$

5. The Exterior Derivative of 1-form u

We will continue our discussions under the hypotheses as those stated in Section

Putting Z = U in (3.12), we find

$$\begin{split} &-2\mu g((\nabla_{Y}A)X,W) + 2c\eta(X)u(Y) - du(U,X)(\eta(Y) + \tau w(Y)) \\ &- du(U,Y)(\eta(X) + \tau w(X)) - d\eta(U,X)u(Y) - d\eta(U,Y)u(X) \\ &+ \mu^{2}(g(\nabla_{X}\xi,Y) + g(\nabla_{Y}\xi,X)) + \mu^{2}((X\tau)w(Y) + (Y\tau)w(X)) \\ &+ \tau \{\mu^{2}(g(\nabla_{X}W,Y) + g(\nabla_{Y}W,X)) - dw(U,Y)u(X) - dw(U,X)u(Y)\} \\ &- (U\tau)(u(X)w(Y) + u(Y)w(X)) = 0. \end{split}$$

Because of (2.1), (2.11) and (3.3), we see

$$d\eta(U, X) = (\lambda - \alpha)\eta(AX) - 2\mu w(AX).$$

Using this and (2.4), above equation reformed as

$$\begin{split} &-2\mu g((\nabla_W A)Y,X) - 2c(\eta(Y)u(X) + \eta(X)u(Y)) - du(U,X)(\eta(Y) + \tau w(Y)) \\ &- du(U,Y)(\eta(X) + \tau w(X)) + \mu^2((X\tau)w(Y) + (Y\tau)w(X)) \\ &- (U\tau)(u(X)w(Y) + u(Y)w(X)) - \{(\lambda - \alpha)\eta(AX) - 2\mu w(AX)\}u(Y) \\ &- \{(\lambda - \alpha)\eta(AY) - 2\mu w(AY)\}u(X) + \mu^2(g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X)) \\ &+ \tau \{\mu^2(g(\nabla_X W, Y) + g(\nabla_Y W, X)) - dw(U, Y)u(X) - dw(U, X)u(Y)\} = 0. \end{split}$$

Substituting (4.20) into this, we obtain

$$\begin{split} & 2\mu g((\nabla_W A)Y, X) \\ & = -2c(\eta(Y)u(X) + \eta(X)u(Y)) - du(U, X)(\eta(Y) + \tau w(Y)) \\ & - du(U, Y)(\eta(X) + \tau w(X)) + \mu^2((X\tau)w(Y) + (Y\tau)w(X)) \\ & - (U\tau)(u(X)w(Y) + u(Y)w(X)) - \{(\lambda - \alpha)\eta(AX) - 2\mu w(AX)\}u(Y) \\ & - \{(\lambda - \alpha)\eta(AY) - 2\mu w(AY)\}u(X) + \mu^2(g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X)) \\ & + \tau \mu^2(g(\nabla_X W, Y) + g(\nabla_Y W, X)) \\ & - \frac{1}{\alpha}u(X)\Big\{(2c\mu - U\mu)w(Y) - (U\alpha + 2c(\lambda - \alpha))\eta(Y) \\ & - \{\mu^2 + 2(\lambda - \alpha)g(AW, W)\}\eta(AY) + 2\mu\left(\lambda + \frac{c}{\alpha}\right)w(AY)\Big\} \\ & - \frac{1}{\alpha}u(Y)\Big\{(2c\mu - U\mu)w(X) - \{U\alpha + 2c(\lambda - \alpha)\}\eta(X) \\ & - \{\mu^2 + 2(\lambda - \alpha)g(AW, W)\}\eta(AX) + 2\mu\left(\lambda + \frac{c}{\alpha}\right)w(AX)\Big\}. \end{split}$$

Combining this to (4.12), we have

$$-2\mu(W\alpha)g(AY,X) + 2\eta(AY) \left\{ -\left(\alpha + \frac{c}{\alpha}\right) u(AX) - \frac{c}{\alpha}(\alpha + \lambda)u(X) + \mu X\mu \right\} + 2\left\{ -\left(\alpha + \frac{c}{\alpha}\right) u(AY) - \frac{c}{\alpha}(\alpha + \lambda)u(Y) + \mu(Y\mu) \right\} \eta(AX) - \frac{2c\mu}{\alpha} \left\{ u(AX)w(Y) + u(AY)w(X) + (\lambda - \alpha)(w(X)u(Y) + w(Y)u(X)) \right\} = -2\alpha c(\eta(Y)u(X) + \eta(X)u(Y)) - \alpha du(U,X)(\eta(Y) + \tau w(Y)) - \alpha du(U,Y)(\eta(X) + \tau w(X)) + \alpha \mu^2((X\tau)w(Y) + (Y\tau)w(X)) - \alpha (U\tau)(u(X)w(Y) + u(Y)w(X)) - \mu^2(\eta(AX)u(Y) + \eta(AY)u(X)) + 2\alpha\mu(w(AY)u(X) + w(AX)u(Y)) + \alpha\mu^2(g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X)) + \mu^3(g(\nabla_X W, Y) + g(\nabla_Y W, X)) - u(X) \left\{ (2c\mu - U\mu)w(Y) - (U\alpha + 2c(\lambda - \alpha))\eta(Y) - (\mu^2 + 2(\lambda - \alpha)g(AW, W))\eta(AY) + 2\mu\left(\lambda + \frac{c}{\alpha}\right)w(AY) \right\} - u(Y) \left\{ (2c\mu - U\mu)w(X) - (U\alpha + 2c(\lambda - \alpha))\eta(X) - (\mu^2 + 2(\lambda - \alpha)g(AW, W))\eta(AX) + 2\mu\left(\lambda + \frac{c}{\alpha}\right)w(AX) \right\}.$$

If we put Y = W in (5.1) and take account of (2.1), (3.5) and (4.19), then we find

$$\begin{split} &-2\mu(W\alpha)w(AX) + \mu^2(X\mu) \\ &+2\mu(W\mu)\eta(AX) - \frac{2c\mu}{\alpha}\{u(AX) + (\lambda - \alpha)u(X)\} \\ &= -\mu du(U,X) - \alpha du(U,W)(\eta(X) + \tau w(X)) \\ &+ \alpha \mu^2((X\tau) + (W\tau)w(X)) \\ &- \mu^2\{(W\alpha)\eta(X) + (W\mu)w(X)\} \\ &+ \left(U\mu - \alpha(U\tau) - \frac{2c}{\alpha}\mu g(AW,W)\right)u(X), \end{split}$$

or, using (4.25) and (4.26)

$$\begin{split} &2\mu(W\alpha)AW - 2c\mu U + \{\mu(\lambda - \alpha)\xi\alpha - 3\mu^2W\alpha - \alpha\mu^2(\xi\tau)\}\xi \\ &- \{\mu^2(W\mu) + \tau\mu^2(W\alpha) + 2\mu^3(\xi\tau)\}W + \mu^2\nabla\mu - \mu(\lambda - \alpha)\nabla\alpha \\ &- 2\mu(2\lambda - \alpha)AU - \mu\left\{\frac{U\alpha}{\alpha} + 2(\lambda - \alpha)g(AW, W) - 2(\lambda - \alpha)^2\right\}U \\ &+ \alpha\mu^2((W\tau)W + \nabla\tau) + \left\{U\mu - \alpha(U\tau) - \frac{2c\mu}{\alpha}g(AW, W)\right\}U = 0. \end{split}$$

By the way, since $\alpha \tau = \mu$, we find

(5.2)
$$\alpha \mu \nabla \tau = \mu \nabla \mu - (\lambda - \alpha) \nabla \alpha.$$

Using this, above equation is reduced to

$$\mu \nabla \mu - (\lambda - \alpha) \nabla \alpha$$

(5.3)
$$= (2\lambda - \alpha)AU + \left\{ \left(\lambda - \alpha + \frac{c}{\alpha} \right) g(AW, W) - (\lambda - \alpha)^2 + c \right\} U$$
$$-(W\alpha)AW + \left\{ 2\mu(W\alpha) - (\lambda - \alpha)\xi\alpha \right\} \xi + (\lambda - \alpha)(2W\alpha - \tau(\xi\alpha))W.$$

If we take the inner product (5.3) with W, then we get

(5.4)
$$\mu(W\mu) = \{3(\lambda - \alpha) - q(AW, W)\}W\alpha - \tau(\lambda - \alpha)\xi\alpha.$$

Also, taking the inner product (5.3) with U and making use of (4.7), we obtain

$$(5.5) \qquad \frac{U\mu}{\mu} - \frac{U\alpha}{\alpha} = \left(3\lambda - 2\alpha + \frac{c}{\alpha}\right)g(AW, W) + (\lambda - \alpha)(2\alpha - 3\lambda) + c.$$

On the other hand, replacing Y by W in (4.23) and using (4.3), we find

$$\begin{split} &g(\nabla_X U, W) + g(\nabla_W U, X) - \frac{\mu}{\alpha} g(\phi \nabla \alpha, X) - (\xi \tau) u(X) \\ &- \{\mu(3\lambda - 2\alpha) - 2\mu g(AW, W) + g(\phi \nabla \alpha, W)\} (\eta(X) + \tau w(X)) \\ &+ 2\left(\lambda - 2\alpha - \frac{c}{\alpha}\right) g(AW, X) - 2cw(X) \\ &+ \frac{\mu}{\alpha} (4\alpha - 3\lambda + 2g(AW, W)) \eta(AX) + \mu \left(\lambda + \frac{2c}{\alpha}\right) \eta(X) = 0, \end{split}$$

or using (4.14),

$$(5.6) g(\nabla_X U, W) + g(\phi \nabla \mu, X) - \frac{\lambda - \alpha}{\mu} g(\phi \nabla \alpha, X)$$

$$-(\xi \tau) u(X) + 2(\lambda - \alpha) w(AX)$$

$$+ \left\{ \frac{U\alpha}{\alpha} + (\lambda - \alpha)(5\alpha - 6\lambda + 4g(AW, W)) \right\} w(X)$$

$$+ \left\{ \frac{U\alpha}{\mu} + \mu(4\alpha - 5\lambda + 3g(AW, W)) \right\} \eta(X) = 0.$$

By the way, applying (5.3) by ϕ and making use of (2.6), (3.3) and (3.5), we have

$$\begin{split} \mu\phi\nabla\mu - (\lambda-\alpha)\phi\nabla\alpha \\ &= -\frac{1}{\mu}(W\alpha)AU + \mu(\xi\tau)U + \mu^2(2\lambda-\alpha)\xi - \mu(2\lambda-\alpha)AW \\ &-\mu\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right)g(AW,W) - (\lambda-\alpha)(3\lambda-2\alpha) + c\right\}W. \end{split}$$

Substituting this into (5.6), we find

$$(5.7) \qquad g(\nabla_X U, W) \\ = \frac{W\alpha}{\mu^2} u(AX) + \alpha w(AX) \\ + \left\{ 3(\lambda - \alpha)^2 + \frac{c}{\alpha} g(AW, W) + c - \frac{U\alpha}{\alpha} - 3(\lambda - \alpha)g(AW, W) \right\} w(X) \\ + \left\{ 3\mu(\lambda - \alpha - g(AW, W)) - \frac{U\alpha}{\mu} \right\} \eta(X).$$

On the other hand, (4.12) turns out, using (2.4), to be

$$\begin{split} &\alpha(\nabla_X A)W\\ &=\frac{c\alpha}{\mu}(\eta(X)U+2u(X)\xi)-(W\alpha)AX\\ &+\frac{1}{\mu}\eta(AX)\left\{\mu\nabla\mu-\left(\alpha+\frac{c}{\alpha}\right)AU-\frac{c}{\alpha}(\lambda+\alpha)U\right\}\\ &+\frac{1}{\mu}\left\{\mu(X\mu)-\left(\alpha+\frac{c}{\alpha}\right)u(AX)-\frac{c}{\alpha}(\lambda+\alpha)u(X)\right\}A\xi\\ &-\frac{c}{\alpha}\left\{w(X)AU+u(AX)W+(\lambda-\alpha)(u(X)W+w(X)U)\right\}. \end{split}$$

If we apply by ϕ to this and make use of (3.3), then we find

$$(5.8) \qquad -\alpha\phi(\nabla_X A)W = (W\alpha)\phi AX + c\alpha\eta(X)W - (X\mu)U$$

$$+\frac{1}{\mu}\eta(AX)\left\{\left(\alpha + \frac{c}{\alpha}\right)\left\{(\lambda - \alpha)A\xi - \mu AW\right\} - \frac{c}{\alpha}\mu(\lambda + \alpha)W - \mu\phi\nabla\mu\right\}$$

$$+\frac{1}{\mu}\left\{\left(\alpha + \frac{c}{\alpha}\right)u(AX) + \frac{2c\lambda}{\alpha}u(X)\right\}U + \frac{c}{\alpha}w(X)(\mu^2\xi - \mu AW).$$

Now, if we put Z = W in (3.12), then we find

$$\begin{aligned} &2g(\phi(\nabla_{Y}A)W,X) \\ &= 2\{(w(A^{2}Y) - cw(Y))\eta(X) - w(AY)\eta(AX)\} \\ &+ du(W,X)(\eta(Y) + \tau w(Y)) + \tau du(Y,X) + (W\tau)(w(Y)u(X) + w(X)u(Y)) \\ &+ (g(\nabla_{W}U,Y) + g(\nabla_{Y}U,W))(\eta(X) + \tau w(X)) \\ &+ \frac{2}{u}\{u(AX) + (\lambda - \alpha)u(X)\}u(Y) \end{aligned}$$

$$+ \frac{\tau}{\mu} \{ u(AX) + (\lambda - \alpha)u(X) \} u(Y)$$

$$+ (Y\tau)u(X) - (X\tau)u(Y) + \tau(u(Y)g(\nabla_W W, X))$$

$$+ u(X)g(\nabla_W W, Y)).$$

Using (2.1), (2.10), (3.5) and (3.8), we can write the above equation as

$$2\alpha g(\phi(\nabla_Y A)W, X)$$

$$= \mu du(Y,X) - 2c\eta(X)w(AY) + 2\mu(c + \alpha^2 + \alpha g(AW,W))\eta(X)\eta(Y)$$

$$+ 2(\alpha\mu^2 + \mu^2 g(AW,W) - c\alpha)\eta(X)w(Y)$$

$$- 2\alpha\eta(AX)w(AY) + \alpha(W\tau)(w(X)u(Y) + w(Y)u(X))$$

$$+ \alpha g(\nabla_W U, X)(\eta(Y) + \tau w(Y))$$

$$+ \alpha g(\nabla_W U, Y)(\eta(X) + \tau w(X)) - g(\nabla_X U, W)\eta(AY)$$

$$+ g(\nabla_Y U, W)\eta(AX) + \frac{2\alpha}{\mu} \{u(AX) + (\lambda - \alpha)u(X)\}u(Y)$$

$$+ \alpha((Y\tau)u(X) - (X\tau)u(Y)) + \mu(u(X)g(\nabla_W W, Y) + u(Y)g(\nabla_W W, X)),$$

or using (5.8),

$$\mu du(X,Y)$$

$$\begin{split} &= (W\alpha)g((\phi A + A\phi)X,Y) + \frac{2c}{\alpha}\mu(w(X)w(AY) - w(Y)w(AX)) \\ &+ \eta(AX)g(\phi\nabla\mu,Y) - \eta(AY)g(\phi\nabla\mu,X) \\ &+ \frac{2c}{\mu\alpha}(u(X)u(AY) - u(Y)u(AX)) - (X\mu)u(Y) + (Y\mu)u(X) \\ &+ \alpha((X\tau)u(Y) - (Y\tau)u(X)) \\ &+ g(\nabla_Y U,W)\eta(AX) - g(\nabla_X U,W)\eta(AY) \\ &+ \{2c\alpha - 2c\lambda - \mu^2(\alpha + g(AW,W))\}(\eta(X)w(Y) - \eta(Y)w(X)), \end{split}$$

which together with (5.2) and (5.7) yields

$$\mu du(X,Y) = (W\alpha)g((\phi A + A\phi)X,Y) + \frac{2c\mu}{\alpha}(w(X)w(AY) - w(Y)w(AX))$$

$$+ \frac{W\alpha}{\mu^2}(\eta(AX)u(AY) - \eta(AY)u(AX))$$

$$+ \eta(AX)g(\phi\nabla\mu,Y) - \eta(AY)g(\phi\nabla\mu,X)$$

$$+ \alpha(\eta(AX)w(AY) - \eta(AY)w(AX))$$

$$+ \frac{2c}{\mu\alpha}(u(X)u(AY) - u(Y)u(AX)) + \frac{\mu}{\alpha}((X\alpha)u(Y) - (Y\alpha)u(X))$$

$$+ \{(\mu^2 + c)g(AW, W) + \alpha\mu^2 - c\alpha + 2c\lambda\}(\eta(X)w(Y) - \eta(Y)w(X)).$$

Putting $X = \phi e_i$ and $Y = e_i$ in this and summing up for $i = 1, 2, \dots, n$, we obtain

$$\mu \sum_{i=0}^{2n} du(\phi e_i, e_i) = (h - \alpha - g(AW, W))W\alpha - \mu(W\mu),$$

where we have used (2.6)–(2.8), (3.5) and (4.7). Taking the trace of (2.12), we obtain

$$\sum_{i=0}^{2n} g(\phi \nabla_{e_i} U, e_i) = \xi \alpha - \xi h.$$

Thus, it follows that

(5.10)
$$\mu(\xi h - \xi \alpha) = \mu(W\mu) + (g(AW, W) + \alpha - h)W\alpha,$$

which together with (4.16) gives

(5.11)
$$\mu^2(\operatorname{div}W) = (g(AW, W) + \alpha - h)W\alpha.$$

We notice here that

Remark 5.1. If $AU = \sigma U$ for some function σ on Ω , then $AW \in \text{span}\{\xi, W\}$ on Ω , where $\text{span}\{\xi, W\}$ is a linear subspace spanned by ξ and W.

In fact, because of the hypothesis $AU = \sigma U$, (3.5) reformed as

$$\mu \phi AW = (\sigma + \lambda - \alpha)U$$
,

which implies that $AW = \mu \xi + (\sigma + \lambda - \alpha)W \in \text{span}\{\xi, W\}.$

Now, we prepare the following lemma for later use.

Lemma 5.2. Let M be a real hypersurface of $M_n(c), c \neq 0$ which satisfies $R_{\xi}\phi = \phi R_{\xi}$ and $\nabla_{\phi\nabla_{\xi}\xi}R_{\xi} = 0$. If $AW \in \text{span}\{\xi, W\}$, then $\Omega = \emptyset$.

Proof. Since (3.5) and $AW = \mu \xi + g(AW, W)W$, we have

(5.12)
$$AU = (g(AW, W) + \alpha - \lambda)U.$$

From (4.2) we also have

$$g(AW, W)(\alpha AU + cU) = 0.$$

Now, suppose that $g(AW, W) \neq 0$ on Ω . Then we have $\alpha AU + cU = 0$ on this subset, which together with (5.12) gives

(5.13)
$$\mu^2 = \alpha g(AW, W) + c.$$

From this and (2.16) we have $R_{\xi}W=0$ and consequently $R_{\xi}A\xi=0$ on the subset because of (2.6) and (2.16). If we take (3.1) by R_{ξ} and using $R_{\xi}U=0$ and $R_{\xi}A\xi=0$, we obtain $R_{\xi}(A\phi-\phi A)=0$, that is, $R_{\xi}(\mathcal{L}_{\xi}g)=0$ on the subset, where \mathcal{L}_{ξ} denotes the operator of the Lie derivative with respect to ξ . Owing to Theorem 5.1 of [5], it is verified that $A\xi=\alpha\xi$, a contradiction. Therefore we have the following

$$(5.14) g(AW, W) = 0$$

on Ω . So we have

$$(5.15) AW = \mu \xi.$$

From (5.12) and (5.14), we get

$$(5.16) AU = (\alpha - \lambda)U.$$

Differentiating (5.15) covariantly, we find

$$(\nabla_X A)W + A\nabla_X W = (X\mu)\xi + \mu\nabla_X \xi.$$

Taking the inner product with W and making use of (2.11) and (5.16), we have

$$g((\nabla_X A)W, W) = 2(\lambda - \alpha)u(X)$$

Using (2.4) it reformed as

(5.17)
$$(\nabla_W A)W = 2(\lambda - \alpha)U.$$

On the other hand, (4.13) is reduced, using (5.16) and (5.17), to

$$(5.18) \qquad (\mu^2 + 2c)U = -\mu(W\alpha)\xi + (W\mu)A\xi + \mu\nabla\mu.$$

Taking the inner product with W, we have

$$(5.19) W\mu = 0.$$

Hence, it follows from (5.18) that

(5.20)
$$\mu \nabla \mu = \mu(W\alpha)\xi + (\mu^2 + 2c)U,$$

which shows that for any vector fields X

$$\mu(X\mu) = \mu(W\alpha)\eta(X) + (\mu^2 + 2c)u(X).$$

Differentiating this covariantly and using (2.1), we have

$$\begin{split} &(Y\mu)(X\mu) + \mu(Y(X\mu)) \\ &= Y(\mu(W\alpha))\eta(X) + \mu(W\alpha)g(\phi AY, X) \\ &+ (2\mu(W\alpha)\eta(Y) + 2(\mu^2 + 2c)u(Y))u(X) + (\mu^2 + 2c)g(\nabla_Y U, X) \\ &+ \{\mu(W\alpha)\eta(\nabla_Y X) + (\mu^2 + 2c)u(\nabla_Y U)\}. \end{split}$$

Taking the skew-symmtric part of this, we find

$$(5.21) Y(\mu(W\alpha))\eta(X) - X(\mu(W\alpha))\eta(Y)$$

$$+(\mu(W\alpha))g((\phi A + A\phi)Y, X)$$

$$+2\mu(W\alpha)(\eta(Y)u(X) - \eta(X)u(Y))$$

$$+(\mu^2 + 2c)(g(\nabla_Y U, X) - g(\nabla_X U, Y)) = 0.$$

Replacing Y by ξ in this, and using (2.10) and (5.17), we have

$$\begin{split} X(\mu(W\alpha)) - 2\mu(W\alpha)u(X) = & \xi(\mu(W\alpha))\eta(X) + (\mu(W\alpha))u(X) \\ & + (\mu^2 + c)(g(\nabla_\xi U, X) - \mu^2\eta(X)). \end{split}$$

Substituting this into (5.21), we obtain

$$\mu(W\alpha)(u(Y)\eta(X) - u(X)\eta(Y))$$

$$+ (\mu^2 + 2c)(g(\nabla_{\xi}U, Y)\eta(X) - g(\nabla_{\xi}U, X)\eta(Y))$$

$$+ \mu(W\alpha)g((\phi A + A\phi)Y, X)$$

$$+ (\mu^2 + 2c)(g(\nabla_Y U, X) - g(\nabla_X U, Y)) = 0.$$

Putting Y = U in this, and using (2.8), (3.3), (4.11), (5.15) and (5.16), we obtain

(5.22)
$$(\mu^2 + 2c)(g(\nabla_U U, X) - \mu(X\mu))$$
$$+ \mu(\mu^2 + 2c)(W\alpha)\eta(X) + \mu^2(\lambda - \alpha)(W\alpha)w(X) = 0.$$

On the other hand, putting Y = U in (5.9) and making use of (5.14), (5.15) and (5.19), we have

$$g(\nabla_U U, X) - \mu(X\mu) = 2(\lambda - \alpha)(W\alpha)w(X) + \frac{U\alpha}{\alpha}u(X) - (\lambda - \alpha)X\alpha.$$

Combining this to (5.22), we have

$$(\mu^{2} + 2c) \left\{ 2(\lambda - \alpha)(W\alpha)w(X) + \frac{U\alpha}{\alpha}u(X) - (\lambda - \alpha)X\alpha \right\}$$

+ $\mu(\mu^{2} + 2c)(W\alpha)\eta(X) - \mu^{2}(\lambda - \alpha)(W\alpha)w(X) = 0.$

If we put X = W in this, then we have

$$(\mu^2 + 2c)(\lambda - \alpha)W\alpha = (\mu^2 + 4c)(\lambda - \alpha)W\alpha,$$

which, together with $\lambda \neq \alpha$, shows that

$$(5.23) W\alpha = 0.$$

Thus, (5.20) becomes

$$\mu \nabla \mu = (\mu^2 + 2c)U,$$

which implies

(5.25)
$$\phi \nabla \mu = -(\mu^2 + 2c)W.$$

Using (5.23), we can write (5.21) as

$$(\mu^2 + 2c)(q(\nabla_Y U, X) - q(\nabla_X U, Y)) = 0.$$

Now, suppose that $\mu^2 + 2c \neq 0$. Then we have $g(\nabla_Y U, X) - g(\nabla_X U, Y) = 0$. Using (5.14)–(5.16), (5.20), (5.23) and (5.25), we can write (5.9) as

$$(\mu^{2} + c)(w(X)\eta(Y) - w(Y)\eta(X)) = 0,$$

which implies $\mu^2 + c = 0$. So μ is constant. Thus, (5.23) becomes $\mu^2 + 2c = 0$, a contradiction. Therefore, we see that $\mu^2 + 2c = 0$.

Accordingly we see that μ is constant, which together with (5.4) yields $\xi \alpha = 0$. Hence (5.3) is reduced to

(5.26)
$$\mu^2 \nabla \alpha = \{ \mu^2 (3\lambda - 2\alpha) - c\alpha \} U.$$

Taking the inner product this to X and differentiating covariantly, we find

$$\mu^{2}(Y(X\alpha)) = \{\mu^{2}(3Y\lambda - 2Y\alpha) - c\alpha\}u(X)$$
$$+ \{\mu^{2}(3\lambda - 2\alpha) - c\alpha\}(g(\nabla_{Y}U, X) + g(U, \nabla_{Y}X)).$$

The skew-symmetric part of this is given by

$$3\mu^{2}((Y\lambda)u(X) - (X\lambda)u(Y)) + (2\mu^{2} + c)((X\alpha)u(Y) - (Y\alpha)u(X)) + \{\mu^{2}(3\lambda - 2\alpha) - c\alpha\}(g(\nabla_{Y}U, X) - g(\nabla_{X}U, Y)) = 0,$$

which implies that $\nabla \lambda = \chi U$ for some function χ , where we have used (4.24) and (5.26). Thus it follows that

$$\{\mu^2(3\lambda - \alpha) - c\alpha\}(g(\nabla_Y U, X) - g(\nabla_X U, Y)) = 0.$$

If $g(\nabla_Y U, X) - g(\nabla_X U, Y) = 0$, then similarly as above we have a contradiction. Thus we have $\mu^2(3\lambda - 2\alpha) - c\alpha = 0$, which together with $\mu^2 + 2c = 0$ gives $2\lambda - \alpha = 0$. i.e. $2\mu^2 + \alpha^2 = 0$, a contradiction. Therefore Lemma 5.2 is proved.

Lemma 5.3.

$$\alpha^{2}\phi(\nabla\lambda - \nabla h) = -4\mu(\mu^{2} + c)(AW - \mu\xi) + \frac{\alpha}{\mu}(h - \lambda)(W\alpha)U + fW,$$

for some function f on Ω .

Proof. Putting $X = Y = e_i$ in (3.12), summing up for $i = 0, 1, \dots, 2n$ and using (2.1) and (2.4), we find

$$\operatorname{Tr}(\nabla_{\phi Z} A) - 2c(n-1)\eta(Z) + (\operatorname{Tr} A^{2})\eta(Z) - h\eta(AZ)$$

$$+ g(\nabla_{\xi} U, Z) - g(\nabla_{Z} U, \xi) + \tau(g(\nabla_{W} U, Z) + g(\nabla_{U} W, Z))$$

$$+ (\operatorname{div} U)(\eta(Z) + \tau w(Z)) + g((\phi A + A\phi)U, Z)$$

$$+ (W\tau)u(Z) + (U\tau)w(Z) + \tau(\operatorname{div} W)u(Z) = 0,$$

or using (2.10), (3.3), (3.7) and (4.24)

(5.27)
$$\phi \nabla \alpha - \phi \nabla h + \frac{\mu}{\alpha} (\nabla_W U + \nabla_U W) - 4\mu AW + (W\tau + \tau(\operatorname{div} W)) U + (U\tau + \tau(\operatorname{div} U) + \mu(4\lambda - 3\alpha - h)) W + (\lambda - \alpha)(\lambda + 3\alpha)\xi = 0.$$

On the other hand, combining (4.20) to (5.8) and making use of (5.7), we find

$$\nabla_{U}W = \frac{1}{\mu} \{ \mu \phi \nabla \mu - (\lambda - \alpha)\phi \nabla \alpha \}$$

$$- (\xi \tau)U + 2\left(2\lambda - \alpha + \frac{c}{\alpha}\right)AW$$

$$+ \left\{ (\lambda - \alpha)(2\alpha - 3\lambda) + c - \left(\lambda + \frac{c}{\alpha}\right)g(AW, W) \right\}W$$

$$+ \mu \left\{ g(AW, W) + 3\alpha - 5\lambda - \frac{2c}{\alpha} \right\} \xi.$$

Substituting this and (4.14) into (5.27), we find

$$(5.28) \qquad \alpha\phi(\nabla\alpha - \nabla h) + 2\mu\phi\nabla\mu - (\lambda - \alpha)\phi\nabla\alpha$$

$$= 4\mu\left(\alpha - \lambda - \frac{c}{\alpha}\right)AW + (\mu(\xi\tau) - \alpha(W\tau) - \mu(\operatorname{div}W))U$$

$$-4(\lambda - \alpha)(\mu^2 + c)\xi - (\alpha(U\tau) + \mu(\operatorname{div}W))W$$

$$-\mu\left\{3c + (\lambda - \alpha)(\alpha - 3\lambda)\right\}$$

$$-\left(\lambda + \frac{c}{\alpha}\right)g(AW, W) + 4\alpha\lambda - 3\alpha^2 - h\alpha\right\}W.$$

From (4.11), (4.16) and (5.2) we have

$$\alpha\mu \left(\mu(\xi\tau) - \alpha(W\tau) - \mu(\operatorname{div}W)\right)$$

= $2\mu^2(W\alpha) - \mu(\lambda - 2\alpha)\xi\alpha - \alpha\mu(\xi h)$.

By the way, using (5.4) and (5.10) we have

$$\mu(\lambda - 2\alpha)\xi\alpha + \alpha\mu(\xi h) = \alpha(3\lambda - 2\alpha - h)W\alpha.$$

Thus, we have

(5.29)
$$\alpha\mu\left(\mu(\xi\tau) - \alpha(W\tau) - \mu(\operatorname{div}W)\right) = \alpha(h-\lambda)W\alpha.$$

Differentiating (3.2) covariantly, we find

$$(5.30) 2\mu\nabla\mu = (\lambda - 2\alpha)\nabla\alpha + \alpha\nabla\lambda.$$

Using this and (5.29), the equation (5.28) reformed as

$$\alpha^{2}\phi(\nabla\lambda - \nabla h) = -4\mu(\mu^{2} + c)(AW - \mu\xi) + \frac{\alpha}{\mu}(h - \lambda)(W\alpha)U + fW,$$

where we have put

$$\begin{split} f = &\alpha\mu \bigg\{ h\alpha + 4\alpha^2 - 8\alpha\lambda + 3\lambda^2 - 3c \\ &+ \left(\lambda + \frac{c}{\alpha}\right) g(AW, W) - \text{div}U - \frac{\alpha}{\mu}(U\tau) \bigg\}. \end{split}$$

This completes the proof of Lemma 5.3.

6. Lemmas

We will continue our discussions under the same hypotheses as those in Section 4. Further we assume that $\text{Tr}R_{\xi}$ is constant, that is, $g(S\xi,\xi)$ is constant. Then, from (2.5) we see that $\beta - h\alpha$ is constant, i.e.

(6.1)
$$\alpha(h - \lambda) = C,$$

where C is some constant. Differentiating this covariantly, we have

(6.2)
$$(\lambda - h)\nabla\alpha + \alpha(\nabla\lambda - \nabla h) = 0.$$

So we have $\alpha \phi(\nabla \lambda - \nabla h) = (h - \lambda)\phi \nabla \alpha$. Thus, from Lemma 5.3 we find

$$\frac{\alpha(h-\lambda)}{\mu}\phi(\nabla\alpha - (W\alpha)W) = -4(\mu^2 + c)(AW - \mu\xi) + \frac{\alpha}{\mu}fW,$$

which tells us that

$$\frac{\alpha(h-\lambda)}{\mu^2}(U\alpha) = 4(\mu^2 + c)g(AW, W) - \frac{\alpha}{\mu}f.$$

Combining the last two equations, it follows that

(6.3)
$$\frac{\alpha(h-\lambda)}{\mu}\phi\left(\nabla\alpha - (W\alpha)W - \frac{U\alpha}{\mu^2}U\right) \\ = -4(\mu^2 + c)(AW - \mu\xi - g(AW, W)W).$$

Applying this by ϕ and using (3.5), we find

(6.4)
$$\alpha(h-\lambda) \left(\nabla \alpha - (\xi \alpha) \xi - (W\alpha) W - \frac{U\alpha}{\mu^2} U \right)$$

$$= 4(\mu^2 + c) \{ AU + (\lambda - \alpha) U - g(AW, W) U \}.$$

Taking the inner product with AW to this, and using (4.6), (5.4) and $\alpha \neq 0$, we see

$$(6.5) (h - \lambda)(q(AW, \nabla \alpha) - \mu(\xi \alpha) - q(AW, W)(W\alpha)) = 0.$$

First of all, we prove the following:

Lemma 6.1. $h - \lambda \neq 0$ on Ω .

Proof. If not, then we have from (6.4)

$$(\mu^2 + c)\{AU - (q(AW, W) + \alpha - \lambda)U\} = 0$$

on this subset. Because of Remark 5.1 and Lemma 5.2, it is verified that $\mu^2 + c = 0$ on the set and hence μ is constant. Accordingly we see that $W\alpha = 0$ because of (4.11) and hence $\xi\alpha = 0$ and $\xi\tau = 0$ by virtue of (5.2) and (5.4). Thus, (5.3) reformed as

$$(\lambda - \alpha)\nabla\alpha + (2\lambda - \alpha)AU + \{c - (\lambda - \alpha)^2\}U = 0,$$

which together with $\mu^2 + c = 0$ implies that

(6.6)
$$X\alpha = \lambda u(X) + \varepsilon g(AU, X)$$

for any vector field X, where we have put $c\varepsilon = \alpha^2 - 2c$. Differentiating (6.6) covariantly with respect to a vector field Y and taking skew-symmetric part, we get

$$\begin{split} &(Y\lambda)u(X) - (X\lambda)u(Y) + \lambda(g(\nabla_Y U, X) - g(\nabla_X U, Y)) \\ &+ (Y\varepsilon)u(AX) - (X\varepsilon)u(AY) \\ &+ \varepsilon\{c\mu(\eta(Y)w(X) - \eta(X)w(Y)) + g(A\nabla_Y U, X) - g(A\nabla_X U, Y)\} = 0. \end{split}$$

where we have used the Codazzi equation (2.4). Since $\xi \alpha = 0$ and (6.1), by replacing X by ξ in this, we get

$$-\lambda(g(\nabla_{\xi}U, Y) + g(\nabla_{Y}\xi, U)) + \varepsilon(g(\nabla_{Y}U, \alpha\xi + \mu W) - c\mu w(Y) - g(\nabla_{\xi}U, AY)) = 0,$$

where we have used (2.6), which together with (2.10) and (5.9) implies that

(6.7)
$$\varepsilon A \nabla_{\xi} U + \lambda \nabla_{\xi} U + \mu \lambda A W \in \operatorname{span}\{\xi, W\}.$$

On the other hand, we can write (3.7) as

$$\nabla_{\xi}U = -\mu(\varepsilon + 3)AW + (\lambda - \alpha)(\varepsilon + 2)A\xi,$$

where we have used (3.3) and (6.6), which together with (2.6), (4.3) and the fact that $\mu^2 + c = 0$ yields

$$A\nabla_{\xi}U = -\mu(\lambda - \alpha)AW + \{c - (\lambda - \alpha)(\varepsilon + 3)g(AW, W)\}A\xi$$
$$-c(\lambda - \alpha)(\varepsilon + 3)\xi.$$

Combining the last three equations, it is seen that

$$\{(2\lambda - \alpha)\varepsilon + 2\lambda\}AW \in \operatorname{span}\{\xi, W\},\$$

which shows that $(2\lambda - \alpha)\varepsilon + 2\lambda = 0$ by Lemma 5.2. So we have $(2\lambda - \alpha)(\alpha^2 - 2c) + 2c\lambda = 0$, a contradiction because of $\mu^2 + c = 0$. This completes the proof.

If we combine (6.2) to (5.30), then we have

(6.8)
$$2\mu\nabla\mu = (h - 2\alpha)\nabla\alpha + \alpha\nabla h.$$

If we apply this by ξ , then we find

(6.9)
$$2\mu(\xi\mu) = (h - 2\alpha)\xi\alpha + \alpha(\xi h).$$

From (4.11), (5.6) and (5.12) we get $(h - \lambda)(\mu(\xi \alpha) - \alpha(W\alpha)) = 0$ and hence

by virtue of Lemma 6.1, which together with (6.9) yields

(6.11)
$$\mu(\xi h) = (2\lambda - h)W\alpha.$$

From (5.2) and (6.10) we have $\xi \tau = 0$. Thus, using (6.8) and (6.10) we verify from (5.3)

(6.12)
$$\frac{1}{2}(h\nabla\alpha + \alpha\nabla h) - \lambda\nabla\alpha + (W\alpha)AW$$
$$= (2\lambda - \alpha)AU + \left\{\left(\lambda - \alpha + \frac{c}{\alpha}\right)g(AW, W) - (\lambda - \alpha)^2 + c\right\}U$$
$$+ (W\alpha)\{\mu\xi + (\lambda - \alpha)W\}.$$

Because of Lemma 6.1, (6.5) implies that

(6.13)
$$g(AW, \nabla \alpha) = (\alpha + g(AW, W))W\alpha,$$

with the aid of (6.10). Applying (5.3) by AW and making use of (4.3), (6.10), (6.13) and $\xi \tau = 0$, we find

$$\mu g(AW, \nabla \mu) - (\lambda - \alpha)(\alpha + g(AW, W))W\alpha + g(A^2W, W)W\alpha$$
$$= \{\mu^2 + (\lambda - \alpha)g(AW, W)\}W\alpha,$$

which together with (4.5) gives

(6.14)
$$\mu \alpha g(AW, \nabla \mu) = \{ (\mu^2 + c)g(AW, W) + \alpha \mu^2 \} W \alpha.$$

In the next place, we will prove that

Lemma 6.2. $\xi \alpha = W \alpha = W \mu = \xi h = \xi \lambda = W \lambda = 0$ and $\xi(g(AW, W)) = 0$ on Ω . *Proof.* Differentiating (4.4) covariantly, we get

(6.15)
$$g(A^{2}W, W)(X\alpha) + \alpha(X(g(A^{2}W, W)))$$
$$= 2\mu g(AW, W)(X\mu) + (\mu^{2} - c)(X(g(AW, W))) + \mu^{2}(X\alpha) + 2\mu\alpha(X\mu).$$

Replacing X by ξ in this, and using (4.11) and (6.10), we find

(6.16)
$$\alpha(\xi(g(A^{2}W, W))) = \frac{\alpha}{\mu}(\mu^{2} - g(A^{2}W, W))W\alpha + 2\mu(\alpha + g(AW, W))W\alpha + (\mu^{2} - c)(\xi(g(AW, W))).$$

By the way, using (4.10), (4.18), (6.10) and (6.13), we verify that $\xi(g(AW, W)) = W\mu$, which together with (5.4) and (6.10) yields

$$\xi(g(AW, W)) = \frac{1}{\mu} \{ 2(\lambda - \alpha) - g(AW, W) \} W \alpha.$$

Substituting this and (4.5) into (6.14), we find

$$(6.17) \qquad \frac{\alpha}{2}\xi(g(A^2W,W)) = \left\{\frac{c}{\mu}g(AW,W) + \mu\alpha + \frac{\mu}{\alpha}(\mu^2 - c)\right\}W\alpha.$$

On the other hand, we have

$$\frac{1}{2}(X(g(A^2W,W))) = g((\nabla_X A)W,AW) + g(A^2W,\nabla_X W),$$

which implies

(6.18)
$$\frac{1}{2}\alpha(X(g(A^2W,W))) = \alpha g((\nabla_W A)X, AW) + 2c\alpha u(X) - cg(AW, \nabla_X W) + cu(AX) + \alpha(\alpha + g(AW, W))u(AX),$$

where we have used (2.6), (2.11) and (4.3).

By the way, putting X=AW in (4.12) and making use of (2.6) and (6.14), we obtain

$$\begin{split} &\alpha(\nabla_W A)AW\\ &= -(W\alpha)A^2W\\ &+ (\alpha + g(AW,W))\left\{-\left(\alpha + \frac{c}{\alpha}\right)AU - \frac{c}{\alpha}(\lambda + \alpha)U + \mu\nabla\mu\right\}\\ &+ \frac{1}{\mu\alpha}\left\{(\mu^2 + c)g(AW,W) + \alpha\mu^2\right\}(W\alpha)A\xi\\ &- \frac{c}{\alpha}g(AW,W)\{AU + (\lambda - \alpha)U\}, \end{split}$$

which implies

$$\alpha g((\nabla_W A)AW, \xi) = \frac{1}{\mu} \{\alpha \mu^2 + (\mu^2 + c)g(AW, W)\}$$

because of (2.6) and (4.11). If we replace X by ξ in (6.16) and make use of (4.11), (4.18) and (6.17), then we obtain

$$(\mu^2 - c - \alpha q(AW, W))(W\alpha) = 0$$

because of $\lambda - \alpha \neq 0$.

Now, suppose that $W\alpha \neq 0$ on Ω . Then since $\lambda \neq \alpha$, we have $\alpha g(AW,W) = \mu^2 - c$, which together with (3.2) and (4.7) gives $\alpha g(AU,U) = -c\mu^2$. From this and (4.6) we verify that $\alpha^2 g(A^2U,U) = c^2\mu^2$. Using the last two equations it is seen that $||\alpha AU + cU||^2 = 0$ and hence $\alpha AU + cU = 0$. Thus, (3.5) is reduced to $\mu\phi AW = (\lambda - \alpha - c/\alpha)U$, which shows that $AW = \mu\xi + g(AW,W)W$ on this subset. According to Lemma 5.2, we have $\Omega = \emptyset$, and hence $W\alpha = 0$ on Ω . Thus, it is clear that $W\mu = 0$, $\xi\alpha = 0$, $\xi h = 0$ and $\xi\lambda = 0$, where we have used (4.11), (5.6), (6.2), (6.9), (6.10) and (6.11). Since (3.2), $W\alpha = 0$ and $W\mu = 0$, we have $W\lambda = 0$. Hence Lemma 6.2 is proved.

Because of Lemma 6.2, we can write (6.4) as

$$\alpha(h-\lambda)\left(\nabla\alpha - \frac{U\alpha}{\mu^2}U\right)$$

= $4(\mu^2 + c)\{AU - (\lambda - \alpha - g(AW, W))U\},$

which tells us that

(6.19)
$$\frac{1}{4}\alpha(h-\lambda)\nabla\alpha = (\mu^2 + c)AU + \theta U,$$

where the function θ is defined by

$$\mu^{2}\theta = \frac{\alpha(h-\lambda)}{4}(U\alpha) - (\mu^{2} + c)g(AU, U).$$

We also have from (5.4)

(6.20)
$$\mu \nabla \mu - (\lambda - \alpha) \nabla \alpha = (2\lambda - \alpha) AU + \rho U,$$

where we have put

(6.21)
$$\rho = \left(\lambda - \alpha + \frac{c}{\alpha}\right) g(AW, W) - (\lambda - \alpha)^2 + c.$$

Remark 6.3. $\mu^2 + c \neq 0$ on Ω .

If not, then we have $\mu^2 + c = 0$ and hence μ is constant on this subset. So (6.19) and (6.20) are reduced respectively to

$$\mu^{2} \nabla \alpha = (U\alpha)U,$$

$$(\lambda - \alpha) \nabla \alpha + (2\lambda - \alpha)AU + \{c - (\lambda - \alpha)^{2}\}U = 0$$

because of Lemma 5.2. Combining these two equations, we obtain

$$(2\lambda - \alpha)AU = \left\{ (\lambda - \alpha)^2 - c - \frac{U\alpha}{\alpha} \right\} U.$$

Suppose that $2\lambda - \alpha = 0$ on this subset. Then, the equation $\mu^2 + c = 0$ becomes $\alpha^2 - 2c = 0$, a contradiction. Thus we have $2\lambda - \alpha \neq 0$. Owing to Remark 5.1 and Lemma 5.2, above equation produces a contradiction. Hence $\mu^2 + c \neq 0$ on Ω is proved.

Lemma 6.4. $(2\lambda - \alpha)\theta = (\mu^2 + c)\rho$ on Ω .

Proof. From (6.17) and (6.18) we have

$$\frac{1}{4}\alpha(h-\lambda)(2\lambda-\alpha)\nabla\alpha - (\mu^2+c)\left\{\frac{1}{2}\nabla\mu^2 - (\lambda-\alpha)\nabla\alpha\right\}$$
$$= \{(2\lambda-\alpha)\theta - (\mu^2+c)\rho\}U.$$

Using the same method as that used to derive (6.7) from (6.6), we can deduce from this that

$$(2\lambda - \alpha)(\xi\theta)U + \{(2\lambda - \alpha)\theta - (\mu^2 + c)\rho\}(\nabla_{\xi}U + \mu AW) = 0,$$

where, we have used (2.10), (6.1) and Lemma 6.2. If we take the inner product with U to this and make use of $\xi \mu = 0$, then we get $(2\lambda - \alpha)\xi \theta = 0$ and hence

$$\{(2\lambda - \alpha)\theta - (\mu^2 + c)\rho\}(\nabla_{\xi}U + \mu AW) = 0.$$

If $(2\lambda - \alpha)\theta - (\mu^2 + c)\rho \neq 0$ on Ω , then we have

$$\nabla_{\xi} U + \mu A W = 0.$$

We discuss our arguments on such a place. Using (3.7), the last equation can be written as

$$\phi \nabla \alpha = 2\mu AW + (2\alpha - 3\lambda)A\xi + \alpha\lambda\xi.$$

Applying this by ϕ and taking account of (3.5) and Lemma 6.2, we obtain

$$(6.22) \nabla \alpha = -2AU + \lambda U.$$

Combining this to (6.19), we obtain

$$\left\{\mu^2+c+\frac{1}{2}\alpha(h-\lambda)\right\}AU=\left\{\frac{1}{4}\alpha\lambda(h-\lambda)-\theta\right\}U.$$

Because of Remark 5.1 and Lemma 5.2, we conclude that $\mu^2 + c + (1/2)\alpha(h - \lambda) = 0$. Hence it follows from (6.1) that μ is constant. Thus, (6.20) reformed as

$$(\lambda - \alpha)\nabla\alpha = (\alpha - 2\lambda)AU - \rho U,$$

which together with (6.22) implies that $\alpha AU = \{\lambda(\alpha - \lambda) - \rho\}U$. Therefore we verify that $(2\lambda - \alpha)\theta - \rho(\mu^2 + c) = 0$ by virtue of Remark 5.1 and Lemma 5.2. This completes the proof.

Lemma 6.5 Let span $\{\xi, W\}$ be the linear subspace spanned by ξ and W. Then there exists $P \in \text{span}\{\xi, W\}$ such that

$$\begin{split} &g(AW, \nabla_X U) \\ &= \frac{c}{\alpha} w(A^2 X) - \left\{ \mu^2 + \left(\lambda - \alpha + \frac{c}{\alpha} \right) g(AW, W) \right\} w(AX) + g(P, X). \end{split}$$

Proof. Putting Y = AW in (5.9) and using (3.6), (4.3), (6.13) and Lemma 6.2, we find

$$\begin{split} \mu du(X,AW) &= \frac{2c}{\alpha} \mu \{ g(A^2W,W)w(X) - g(AW,W)w(AX) \} \\ &+ \eta(AX)g(\phi\nabla\mu,AW) - \mu(\alpha + g(AW,W))g(\phi\nabla\mu,X) \\ &+ \alpha \{ g(A^2W,W)\eta(AX) - \mu(\alpha + g(AW,W))w(AX) \} \\ &+ \{ (\mu^2 + c)g(AW,W) + \alpha\mu^2 - c\alpha + 2c\lambda \} (g(AW,W)\eta(X) - \mu w(X)), \end{split}$$

which enables us to obtain

$$g(AW, \nabla_X U) - g(\nabla_{AW} U, X)$$

$$= -\alpha \left(\alpha + g(AW, W) + \frac{2c}{\alpha^2} g(AW, W)\right) w(AX)$$

$$- (\alpha + g(AW, W)) g(\phi \nabla \mu, X) + g(P_1, X),$$

for some $P_1 \in \text{span}\{\xi, W\}$. If we replace X by AW in (4.23) and make use of (3.5), (4.3), (6.14) and Lemma 6.2, then we get

$$\begin{split} g(\nabla_X U,AW) + g(\nabla_{AW} U,X) \\ &= 2cw(AX) + 2\alpha w(A^2X) - 2w(A^3X) \\ &+ \left(\mu + \frac{\mu}{\alpha}g(AW,W)\right) \left\{ (3\lambda - 2\alpha)\eta(AX) - 2\mu w(AX) \\ &- \alpha\lambda\eta(X) + g(\phi\nabla\alpha,X) \right\} \\ &+ \left\{ \mu(3\lambda - 2\alpha)(\alpha + g(AW,W)) - 2\mu g(AW,W) - \alpha\lambda\mu \\ &- \frac{1}{\mu}g(AU + (\lambda - \alpha)U,\nabla\alpha) \right\} (\eta(X) + \tau w(X)) - 2c\mu\eta(X), \end{split}$$

which shows that

$$g(\nabla_X U, AW) + g(\nabla_{AW} U, X)$$

$$= -2w(A^3 X) + 2\alpha w(A^2 X) + 2cw(AX)$$

$$-2(\lambda - \alpha)(\alpha + g(AW, W))w(AX)$$

$$+ \frac{\mu}{\alpha}(\alpha + g(AW, W))g(\phi \nabla \alpha, X) + g(P_2, X),$$

for some $P_2 \in \text{span}\{\xi, W\}$. Adding to the last two equations, we obtain

$$\begin{split} 2g(AW,\nabla_X U) &= -2w(A^3X) + 2\alpha w(A^2X) + 2cw(AX) \\ &- 2(\lambda - \alpha)(\alpha + g(AW,W))w(AX) \\ &- \alpha \left(\alpha + g(AW,W) + \frac{2c}{\alpha^2}g(AW,W)\right)w(AX) \\ &- (\alpha + g(AW,W))\left(\phi\nabla\mu - \frac{\mu}{\alpha}\phi\nabla\alpha\right) \\ &+ g(P_3,X) \end{split}$$

for some $P_3 \in \text{span}\{\xi, W\}$.

By the way, applying (6.20) by ϕ , and using (2.8) and (3.4), we find

(6.23)
$$\phi \nabla \mu - \frac{\mu}{\alpha} \phi \nabla \alpha = (2\lambda - \alpha) \{ -AW + \mu \xi + (\lambda - \alpha)W \} - \rho W.$$

Because of (4.3), we have

$$A^{3}W = -\frac{c}{\alpha}A^{2}W + (\lambda - \alpha)(\alpha + g(AW, W))AW + \mu\left(\alpha + \frac{c}{\alpha} + g(AW, W)\right)A\xi.$$

Combining the last three equations, we obtain

$$g(AW, \nabla_X U)$$

$$= \frac{c}{\alpha} w(A^2 X) - \left\{ \mu^2 + \left(\lambda - \alpha + \frac{c}{\alpha} \right) g(AW, W) \right\} w(AX) + g(P_4, X)$$

for some $P_4 \in \text{span}\{\xi, W\}$. The completes the proof.

Remark 6.6. $W \rho = 0$ on Ω .

In fact, we have

$$W(g(AW, W)) = g((\nabla_W A)W, W) + 2g(AW, \nabla_W W),$$

which together with (4.13) and Lemma 6.2 yields

$$W(g(AW, W)) = 2g(AW, \nabla_W W).$$

However, if we take the inner product with AW to (4.19) and make use of Lemma 6.2 and (6.14), then we obtain $g(AW, \nabla_W W) = 0$. So we have W(g(AW, W)) = 0, which connected to (6.21) and Lemma 6.2 gives $W\rho = 0$.

7. Proof of the Main Theorem

We will continue our discussions under the same assumptions as those in Section 6. Taking the inner product X to (6.20) and differentiating covariantly, we have

$$\begin{split} &(Y\mu)(X\mu) + \mu(Y(X\mu)) - (Y\lambda - Y\alpha)(X\alpha) - (\lambda - \alpha)(Y(X\alpha)) \\ &= (2(Y\lambda) - Y\alpha)u(AX) \\ &\quad + (2\lambda - \alpha)(g((\nabla_Y A)U, X) + g(A\nabla_Y U, X)) \\ &\quad + (Y\rho)u(X) + \rho g(\nabla_Y U, X) + g((2\lambda - \alpha)AU + \rho U, \nabla_Y X). \end{split}$$

Taking the skew-symmetric part of this and using (2.4), we find

$$(X\lambda)(Y\alpha) - (Y\lambda)(X\alpha)$$

$$+(2(X\lambda) - X\alpha)u(AY) - (2(Y\lambda) - Y\alpha)u(AX)$$

$$= c\mu(2\lambda - \alpha)(\eta(Y)w(X) - \eta(X)w(Y))$$

$$+(2\lambda - \alpha)(g(A\nabla_Y U, X) - g(A\nabla_X U, Y))$$

$$+(Y\rho)u(X) - (X\rho)u(Y) + \rho(g(\nabla_Y U, X) - g(\nabla_X U, Y)),$$

where we have used (2.4) and (2.8). Differentiating (6.21) covariantly and taking the inner product ξ to this, it follows from Lemma 6.2 that $\xi \rho = 0$. Putting $Y = \xi$ in (7.1) and using (2.6) and $\xi \rho = 0$, we find

$$c\mu(2\lambda - \alpha)w(X) - (2\lambda - \alpha)\{g(\alpha\xi + \mu W, \nabla_X U) + g(\nabla_\xi U, AX)\} - \rho(g(\nabla_X U, \xi) - g(\nabla_\xi U, X)) = 0,$$

or using (2.10), (5.7) and Lemma 6.2,

(7.2)
$$(2\lambda - \alpha)A\nabla_{\xi}U + \rho\nabla_{\xi}U + \mu\rho AW \in \operatorname{span}\{\xi, W\}.$$

If we put Y=W in (7.1) and take account of Lemma 6.2 and Remark 6.6, then we have

(7.3)
$$(2\lambda - \alpha)\{g(\nabla_X U, AW) - g(A\nabla_W U, X) + c\mu\eta(X)\} + \rho(g(\nabla_X U, W) - g(\nabla_W U, X)) = 0.$$

By the way, putting Y = W in (5.9), we have

$$g(\nabla_X U, W) - g(\nabla_W U, X)$$

$$= -\left(\alpha + \frac{2c}{\alpha}\right) w(AX) - g(\phi \nabla \mu, X) + g(P_5, X)$$

for some $P_5 \in \text{span}\{\xi, W\}$, which together with Lemma 6.5 and (7.3) implies that

$$(2\lambda - \alpha) \left\{ \frac{c}{\alpha} A^2 W - \left(\mu^2 + \left(\lambda - \alpha + \frac{c}{\alpha} \right) g(AW, W) \right) AW - A \nabla_W U \right\}$$
$$- \rho \left\{ \left(\alpha + \frac{2c}{\alpha} \right) AW + \phi \nabla \mu \right\} \in \operatorname{span} \{ \xi, W \}.$$

It follows from this and (4.14) that

$$\begin{split} &(2\lambda - \alpha)A\phi\nabla\mu + \rho\phi\nabla\mu \\ &+ (2\lambda - \alpha)\left\{\frac{c}{\alpha}A^2W + \left(\lambda - \alpha + \frac{c}{\alpha}\right)g(AW, W)AW\right\} \\ &+ \rho\left(\alpha + \frac{2c}{\alpha}\right)AW \in \text{span}\{\xi, W\}. \end{split}$$

If we take account of (4.3), (6.21) and (6.23), then the last equation can be written

(7.4)
$$\frac{\mu}{\alpha} (2\lambda - \alpha) A \phi \nabla \mu + \rho \phi \nabla \mu + (2\lambda - \alpha)^2 \left(\lambda - \alpha + \frac{c}{\alpha}\right) A W$$
$$+ (2\lambda - \alpha) \left\{ \frac{c}{\alpha} A^2 W + ((\lambda - \alpha)^2 - c) A W \right\}$$
$$+ \rho \left(\alpha + \frac{2c}{\alpha}\right) A W \in \operatorname{span}\{\xi, W\}.$$

On the other hand, from (3.7) we have

$$A\nabla_{\xi}U = \mu(3\lambda - 2\alpha)AW - 3\mu A^2W + 2\mu^2 A\xi + A\phi\nabla\alpha,$$

where we have used (2.6). Substituting this into (7.2), we find

$$(2\lambda - \alpha)A\phi\nabla\alpha + \rho\phi\nabla\alpha - 2\mu\rho AW - (2\lambda - \alpha)\mu\{3A^2W + (2\alpha - 3\lambda)AW\} \in \text{span}\{\xi, W\}.$$

Combining this to (7.4), we obtain

$$(\lambda - \alpha) \left\{ -\frac{\rho}{\mu} \phi \nabla \alpha + 2\rho AW + (2\lambda - \alpha)(3A^2W + (2\alpha - 3\lambda)AW) \right\}$$

$$+ \rho \phi \nabla \mu + (2\lambda - \alpha)^2 \left(\lambda - \alpha + \frac{c}{\alpha}\right) AW + \frac{c}{\alpha}(2\lambda - \alpha)A^2W$$

$$+ (2\lambda - \alpha)\{(\lambda - \alpha)^2 - c\}AW + \rho \left(\alpha + \frac{2c}{\alpha}\right) AW \in \text{span}\{\xi, W\},$$

which together with (4.3) and (6.23) implies that

$$\{2\rho\alpha - (2\lambda - \alpha)(\mu^2 + c)\}AW \in \text{span}\{\xi, W\},$$

that is,

$$\{2\rho\alpha - (2\lambda - \alpha)(\mu^2 + c)\}(AW - \mu\xi - g(AW, W)) = 0.$$

According to Lemma 5.2, we see that

$$(7.5) 2\rho\alpha = (2\lambda - \alpha)(\mu^2 + c).$$

From this fact and Lemma 6.4, we see that $2\alpha\theta = (\mu^2 + c)^2$ by virtue of $2\lambda - \alpha \neq 0$. Thus, (6.19) is reduced to

(7.6)
$$\kappa \nabla \alpha = 2\alpha A U + (\mu^2 + c) U$$

with the aid of Remark 6.3, where we have put

$$\kappa = \frac{\alpha^2 (h - \lambda)}{2(\mu^2 + c)}.$$

Differentiating this covariantly and taking the inner product with ξ , it follows from (6.1) and Lemma 6.2 that $\xi \kappa = 0$.

As in the same method as that used from (6.6) to drive (6.7), we can deduce from (7.6) that

$$2\alpha g(A\nabla_{\xi}U,X) + (\mu^2 + c)g(\nabla_{\xi}U,X)$$

= $\mu\{-2c\alpha w(X) - 2\alpha^2 w(AX) - (\mu^2 + c)w(AX) + 2\alpha g(\nabla_X U, W)\},$

which together with (5.7) implies that

(7.7)
$$2\alpha A \nabla_{\xi} U + (\mu^2 + c) \nabla_{\xi} U + \mu(\mu^2 + c) A W \in \text{span}\{\xi, W\}.$$

On the other hand, applying (7.6) by ϕ and using (2.6) and (3.3), we find

$$\frac{\kappa}{\mu}\phi\nabla\alpha = -2\alpha AW + (\mu^2 + c)W + 2\alpha\mu\xi,$$

which together with (4.3) yields

$$\frac{\kappa}{\mu} A\phi \nabla \alpha = (\mu^2 + c)AW - 2\mu g(AW, W)A\xi - 2c\mu \xi.$$

From Lemma 6.1 we have $\kappa \neq 0$ and hence combining the last two equations, it is verified that

(7.8)
$$2\alpha A\phi \nabla \alpha + (\mu^2 + c)\phi \nabla \alpha \in \operatorname{span}\{\xi, W\}.$$

By the way, applying (3.7) by A and using (4.3), we find

$$2\alpha A \nabla_{\xi} U + (\mu^{2} + c) \nabla_{\xi} U - 2\alpha \mu \left(3\lambda - 2\alpha + \frac{3c}{\alpha} \right) AW + 3\mu (\mu^{2} + c) AW - 2\alpha A \phi \nabla \alpha - (\mu^{2} + c) \phi \nabla \alpha \in \text{span}\{\xi, W\},$$

which together with (7.7) and (7.8) gives

$$(2\mu^2 + \alpha^2 + 2c)(AW - \mu\xi - g(AW, W)) = 0.$$

Owing to Lemma 5.2, we see that $2\mu^2 + \alpha^2 + 2c = 0$, which implies that $2\mu\nabla\mu + \alpha\nabla\alpha = 0$. Hence (6.20) reformed as

(7.9)
$$\nabla \alpha + 2AU + \frac{\mu^2 + c}{\alpha}U = 0$$

by virtue of $2\lambda - \alpha \neq 0$ on Ω , where we have used (7.5). Combining this to (6.19), we have

$$\left\{ \mu^2 + c + \frac{1}{2}\alpha(h - \lambda) \right\} AU = \frac{1}{4} \{ 4\theta + (h - \lambda)(\mu^2 + c) \} U.$$

According to Remark 5.1, it follows that $\mu^2 + c + (1/2)\alpha(h - \lambda) = 0$, which together with (6.1) gives μ is constant and hence α is constant. Thus (7.9) becomes $AU = -\{(\mu^2 + c)/(2\alpha)\}U$, a contradiction by virtue of Remark 5.1.

Therefore we verify that $\Omega = \emptyset$, that is, $A\xi = \alpha\xi$ on M. Thus, from (2.18) we see that $R_{\xi}S = SR_{\xi}$. Hence from Theorem 1.2 ([9]) M is homogeneous real hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies $\nabla_{\phi\nabla_{\xi}\xi}R_{\xi}=0$. Since $\operatorname{Tr} A$ is constant and (2.16), it is easy to see that $\phi R_{\xi}=R_{\xi}\phi$ and $\operatorname{Tr} R_{\xi}$ is constant.

Consequently we conclude that

Theorem 7.1. Let M be a real hypersurface of a complex space form $M_n(c), c \neq 0, n \geq 3$ which satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi} = 0$ and TrR_{ξ} is constant. Then M holds $\phi R_{\xi} = R_{\xi} \phi$ if and only if $A\xi = 0$ or M is locally congruent to one of following:

- (I) In cases that $M_n(c) = P_n \mathbb{C}$ with $\eta(A\xi) \neq 0$,
 - (A₁) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$;
 - (A₂) a tube of radius r over a totally geodesic $P_k\mathbb{C}$ for some $k \in \{1, \ldots, n-2\}$, where $0 < r < \pi/2$ and $r \neq \pi/4$.
- (II) In cases $M_n(c) = H_n\mathbb{C}$,
 - (A_0) a horosphere;
 - (A₁) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1}\mathbb{C}$;
 - (A_2) a tube over a totally geodesic $H_k\mathbb{C}$ for some $k \in \{1, \ldots, n-2\}$.

References

- [1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math., **395**(1989), 132-141.
- [2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
- [3] J. T. Cho and U-H. Ki, Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar., 80(1998), 155-167.
- [4] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371.
- [5] U-H. Ki, I. -B. Kim and D. H. Lim, Characterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc., 47(2010), 1-15.
- [6] U-H. Ki and H. Kurihara, Real hypersurfaces and ξ -parallel structure Jacobi operators in complex space forms, J. Korean Academy Sciences, Sciences Series, 48(2009), 53-78.
- [7] U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J., 32(2009), 5-23.
- [8] U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math., 33(2009), 39-56.
- [9] U-H. Ki, S. Nagai and R. Takagi, The structure vector field and structure Jacobi operator of real hypersurfaces in nonflat complex space forms, Geom. Dedicata, 149(2010), 161-176.
- [10] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math J. Okayama Univ., 32(1990), 207-221.

- [11] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., **296**(1986), 137-149.
- [12] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperblic space, Geom Dedicata, 20(1986), 245-261.
- [13] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364.
- [14] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613.
- [15] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc., 13(2006), 459-469.
- [16] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 1005-1009.
- [17] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
- [18] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc., 15(1975), 43-53, 507-516.