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ABSTRACT. Let M be a real hypersurface of a complex space form with almost contact
metric structure (¢, &,7,g). In this paper, we prove that if the structure Jacobi operator
Re = R(-,£)¢ is ¢Ve&-parallel and R; commute with the structure tensor ¢, then M is a
homogeneous real hypersurface of Type A provided that TrR; is constant.

1. Introduction

A complex n-dimensional K&hler manifold of constant holomorphic sectional
curvature 4c¢ # 0 is called a complex space form, which is denoted by M, (c). So
naturally there exists a K&hler structure J and K&hler metric § on M, (c). As is
well known, complete and simply connected complex space forms are isometric to
a complex projective space P,(C), or complex hyperbolic space H,(C) as ¢ > 0 or
¢ < 0. Now let us consider a real hypersurface M in M, (c). Then we also denote
by g the induced Riemannian metric of Mand by N a local unit normal vector field
of M in M,(c). Further, A denotes by the shape operator of M in M, (c). Then,
an almost contact metric structure (¢,&,n,g) of M is naturally induced from the
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Kahler structure of M, (c) as follows:
PX = (‘]X)T7 §=—-JN, U(X) - g(XaE)aX eTM,

where TM denotes the tangent bundle of M and ()7 the tangential component
of a vector. The Reeb vector ¢ is said to be principal if A = o, where a = n(AE).
A real hypersurface is said to a Hopf hypersurface if the Reeb vector £ of M is
principal. Hopf hypersurfaces is realized as tubes over certain submanifolds in
P,C, by using its focal map (see Cecil and Ryan [2]). By making use of those
results and the mentioned work of Takagi ([17], [18]), Kimura [11] proved the local
classification theorem for Hopf hypersurfaces of P, C whose all principal curvatures
are constant. For the case H,C, Berndt [1] proved the classification theorem for
Hopf hypersurfaces whose all principal curvatures are constant. Among the several
types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular
type of tubes over totally geodesic P,C or HxC (0 < k < n—1) adding a horosphere
in H,,C, which is called type A, has a lot of nice geometric properties. For example,
Okumura [13](resp. Montiel and Romero [12]) showed that a real hypersurface in
P,C (resp. H,C) is locally congruent to one of real hypersurfaces of type A if
and only if the Reeb flow ¢ is isometric or equivalently the structure operator ¢
commutes with the shape operator A.

The Reeb vector field £ plays an important role in the theory of real hypersur-
faces in a complex space form M, (c). Related to the Reeb vector field £ the Jacobi
operator R¢ defined by Re = R(-,§)§ for the curvature tensor R on a real hyper-
surface M in M, (c) is said to be a structure Jacobi operator on M. The structure
Jacobi operator has a fundamental role in contact geometry. In [3], Cho and first
author started the study on real hypersurfaces in complex space form by using the
operator R¢. In particular the structure Jacobi operator has been studied under
the various commutative conditions ([4], [5], [7], [16]). For example, Pérez et al.
[16] called that real hypersurfaces M has commuting structure Jacobi operator if
R¢Rx = RxR¢ for any vector field X on M, and proved that there exist no real
hypersurfaces in M,,(¢) with commuting structure Jacobi operator. On the other
hand Ortega et al. [14] have proved that there are no real hypersurfaces in M, (c)
with parallel structure Jacobi operator Re, that is, VxRe¢ = 0 for any vector field
X on M. More generally, such a result has been extended by [15]. In this situa-
tion, if naturally leads us to be consider another condition weaker than parallelness.
In the preceding work, we investigate the weaker condition &-parallelness, that is,
VeRe = 0 (cf. [4], [7], [8]). Moreover some works have studied several conditions
on the structure Jacobi operator Re ([3], [5], [7] and [8]). The following facts are
used in this paper without proof.

Theorem 1.1. (Ki, Kim and Lim [5]) Let M be a real hypersurface in a nonflat
complex space form M, (c),c # 0 which satisfies Re(Ap — ¢A) = 0. Then M is a
Hopf hypersurface in My, (c). Further, M is locally congruent to one of the following
hypersurfaces:

(I) In cases that M, (c) = P,C with n(A&) # 0,
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(A1) a geodesic hypersphere of radius r, where 0 < r < 7w/2 and r # w/4;

(A2) a tube of radius r over a totally geodesic PiC for somek € {1,...,n—2},
where 0 < r < /2 and r # /4.

(IT) In cases My(c) = H,C,

(Ap) a horosphere;
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

n—1%;

(A2) a tube over a totally geodesic H,C for some k € {1,...,n — 2}.

Theorem 1.2. (Ki, Nagai and Takagi [9]) Let M be a real hypersurface in a nonflat
complex space form M, (c),c # 0 If M satisfies Re¢ = ¢Re and at the same time
ReS = SRe. Then M is the same types as those in Theorem 1.1, where S denotes
the Ricci tensor of M.

In [6], the authors started the study on real hypersurfaces in a complex space
form with ¢V¢&-parallel structure Jacobi operator Rg, that is, Vyy.eRe = 0 for
the vector V£ orthogonal to £. In this paper we invetigate the structure Jacobi
operator is ¢V¢&-parallel under the condition that the structure Jacobi operator
commute with the structure tensor ¢. We prove that if the structure Jacobi oper-
ator R is ¢V¢&-parallel and Re commute with the structure tensor ¢, then M is
homogeneous real hypersurfaces of Type A provided that TrR, is constant.

All manifolds in this paper are assumed to be connected and of class C*° and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M, (c),c # 0
with almost complex structure J, and N be a unit normal vector field on M.
The Riemannian connection V in M, (c) and V in M are related by the following
formulas for any vector fields X and Y on M:

VxY =VxY +g(AX,Y)N, VxN=-AX

where g denotes the Riemannian metric of M induced from that of M, (c) and A
denotes the shape operator of M in direction N. For any vector field X tangent to
M, we put

JX =¢X +n(X)N, JN=-¢.

We call ¢ the structure vector field (or the Reeb vector field) and its flow also
denoted by the same latter £&. The Reeb vector field £ is said to be principal if
A€ = af, where o = n(A¢E).

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field
¢ is principal. Tt is known that the aggregate (¢,£,n,g) is an almost contact metric
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structure on M, that is, we have
P*X = =X +1(X)E, g(6X,0Y) = g(X,Y) = n(X)n(Y),
nE) =1, ¢¢ =0, n(X)=g(X,§)

for any vector fields X and Y on M. From Kihler condition VJ = 0, and taking
account of above equations, we see that

(2.1) Vx&=9AX,
(2.2) (Vx9)Y =n(Y)AX — g(AX,Y)¢

for any vector fields X and Y tangent to M.
Since we consider that the ambient space is of constant holomorphic sectional
curvature 4c, equations of Gauss and Codazzi are respectively given by

R(X,Y)Z = c{g(Y, 2)X — g(X, 2)Y +g(¢Y, Z)6X — g(6X, Z)9Y

(2.3) —29(¢X,Y)pZ} + g(AY, Z)AX — g(AX, Z)AY,

(2.4) (VxA)Y = (Vy A)X = c{n(X)pY —n(YV)¢X —29(¢X,Y)E}

for any vector fields X,Y and Z on M, where R denotes the Riemannian curvature
tensor of M.

In what follows, to write our formulas in convention forms, we denote by o =
n(A€), B = n(A2%¢) and h = TrA, and for a function f we denote by V f the gradient
vector field of f.

From the Gauss equation (2.3), the Ricci tensor S of M is given by

(2.5) SX =c{(2n+1)X —3n(X)¢é} + hAX — A%X

for any vector field X on M.
Now, we put

(2.6) AE = a€ + u,

where W is a unit vector field orthogonal to £. In the sequel, we put U = V£, then
by (2.1) we see that

(2.7) U = ppW

and hence U is orthogonal to W. So we have g(U,U) = p?. Using (2.7), it is clear
that

(2.8) U = —AE + ak,
which shows that g(U,U) = 8 — a?. Thus it is seen that

(2.9) u? =B —a’



Jacobi operators with respect to the Reeb vector fields 545

Making use of (2.1), (2.7) and (2.8), it is verified that

(2.10) ng(VxW,§) = g(AU, X),
(2.11) 9(Vx&U) = pg(AW, X)

because W is orthogonal to &.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we
find

(2.12) (VxA)E = —9pVxU + g(AU + Va, X)) — ApAX + apAX,
which together with (2.4) implies that
(2.13) (VeA)E = 2AU + Vo
Applying (2.12) by ¢ and making use of (2.11), we obtain
(214)  G(VxA)E = ViU + pg(AW, X)& — pAGAX — aAX + ag(A€, X)E,
which connected to (2.1), (2.9) and (2.13) gives
(2.15) VeU = 30AU + aAE — BE+ oV a.
Using (2.3), the structure Jacobi operator Ry is given by
(216)  Re(X) = R(X, ) = cfX — n(X)&} + aAX — n(AX)A¢
for any vector field X on M. Differentiating this covariantly along M, we find

9(VxR)Y,Z) = g(Vx(RY)— Re(VxY), Z)
= —c(n(Z2)g(Vx&Y) +n(Y)9(VxE, Z))
(2.17) +(Xa)g(AY, Z) + ag((Vx A)Y, Z)
—n(AZ){g((VxA)E,Y) + g(ApAX,Y)}
—n(AY ){g(VxA)E, Z) + g(ApAX, Z)}.

From (2.5) and (2.16), we have

g (RS = SRO(X) = —n(AX)A% 4 9 A°X) A¢ — n(AX) (hAE — cO
' +(h(AX) — en(X))A%E — ch(n(AX)E — n(X)AE).
Let 2 be the open subset of M defined by

Q={pe M; A — af #0}.

At each point of 2, the Reeb vector field £ is not principal. That is, £ is not an
eigenvector of the shape operator A of M if Q # ().
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In what follows we assume that {2 is not an empty set in order to prove our main
theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns
the set Q.

3. Real Hypersurfaces Satisfying R:¢ = ¢R¢

Let M be a real hypersurface in M,(c),c # 0. We suppose that Re¢ = ¢R;.
Then by using (2.16) we have

(3.1) a(pAX — ApX) = g(A¢, X)U + g(U, X ) AE.

Then, using (3.1), it is clear that o # 0 on Q. So a function A given by 8 = a\ is
defined. Because of (2.9), we have

(3.2) p? =a\—a’

Replacing X by U in (3.1) and taking account of (2.8), we find
(3.3) AU = NAE — A%¢,

which implies

(3.4) PA%E = AU + \U

because U is orthogonal to A¢. From this and (2.6) we have
(3.5) AW = AU + (A — o)V,

which together with (2.7) yields

(3.6) g(AW,U) = 0.

Using (2.6) and (3.3), we can write (2.15) as

(3.7) VeU = (3X — 20) AL — 3uAW — aXé + ¢Va.
Since a # 0 on §, (3.1) reformed as

(3.8) (pA — AP) X = n(X)U + w(X)E + m7(w(X)W + w(X)U),

where a 1-form w is defined by u(X) = ¢g(U, X) and w by w(X) = g(W, X), where
we put

(3.9) ar =p, A—a = ut.
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Differentiating (3.8) covariantly and taking the inner product with any vector field
Z, we find

9(d(VyA)X,Z) + g(6(Vy A)Z, X)

= -—n(AX)g(AY, Z) — g(AX,Y)n(AZ)
+9(A*X,Y)n(Z) +n(X)g(A*Y, Z)
+(n(X) + Tw(X))g(VyU, Z)
+9(VyU, X)(n(Z) + Tw(Z2))
+u(X)g(Vy§, Z) + g(Vy &, X)u(Z)
+(Y 1) (w(X)w(Z) + u(Z)w(X))
+7(u(X)g(Vy W, Z) + g(Vy W, X)u(2))

(3.10)

because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect
to X and Y, and making use of the Codazzi equation (2.4), we find
(3.11)
cn(X)g(Y, Z) = n(Y)g(X, Z)) + g(Vx A)$Y, Z) — g((Vy A)¢ X, Z)
— “(AX)g(AY, Z) + 5(AY )g(AX, Z) + n(X)g(A%Y, Z) — (¥ )g(A2X, 2)
F((X) + rw(X))g(VyU, Z) — (1Y) + rw(Y)g(V U, 2)
+9(VyU, X) = g(VxU,Y))(0(Z) + Tw(Z))
+u(X)g(Vy¢, 2) —u(Y)g(Vx§, Z) + (9(Vy &, X) — g(VxEY))u(2)
+7) (W X)w(Z) + u(Z)w(X)) = (X7)(u(Y)w(Z) + u(Z)w(Y))
+T{u(X)g(Vy W, Z) = u(Y)g(VxW, Z)}
+7{(g(Vy W, X) — g(VxW,Y))u(Z)}.

Interchanging Y and Z in (3.10), we obtain

9(B(VZA)X,Y) + g(6(VzA)Y, X)
— —n(AX)g(AY. Z) — g(AX, Z)n(AY)
T g(A2X, Z)n(Y) + n(X)g(A%Y, Z) + (n(X) + Tw(X))g(V U, Y)
+9(V2U, X) (V) + Tw(Y) + u(X)g(V 26, Y) + 9(V 26, X)u(Y)
+ (Z7) (X w(Y) + u¥)w (X)) + 7(u(X)g(VZW,Y) + g(V W, X)u(Y)),

or, using (2.4)

9(d(VxA)ZY) + g(d(VyA)Z, X) + c(n(X)g(Z,Y) +n(Y)g(Z,X) — 2n(Z)g(X,Y))
= —n(AX)g(AY, Z) — g(AX, Z)n(AY ) + g(A*X, Z)n(Y) + 1n(X)g(A%Y, Z)
+ ((X) +7w(X))g(VzU,Y) + g(VzU, X)(n(Y) + 7w(Y))
+u(X)g(VzE,Y) + g(VzE X)u(Y)
+ (Z7) (W X)w(Y) + u(Y)w(X)) + 7(u(X)g(VZW.Y) + g(Vz W, X)u(Y)).
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Combining this to (3.11), we have
29((Vy A)p X, Z) + 2¢(n(2)g(X,Y) = n(X)g(Y; Z))

+

+2n(X)g(A%Z,Y) — 2m(AX)g(AZ,Y)

+(9(VzU,X) = g(VxU, 2))(n(Y) + Tw(Y))
+(9(VyU, X) = g(VxU,Y))(n(Z) + Tw(Z))
+(9(VzU,Y) +g(VyU, 2))(n(X) + Tw(X))

(3.12) +(9(VzE X) = 9(VxE, 2))u(Y) + (9(VyE X) = 9(Vx& Y))u(Z)
+(9(VzEY) +9(Vy € Z2))u(X) + (Y1) (w(X)w(Z) + u(Z)w(X))
+(Z7)(w(X)w(Y) + u(Y)w(X)) = (X7)(w(Y)w(Z) + u(Z)w(Y))
+{u(X)(g(V2WY) + g(Vy W, Z))
+u(Z)(g(VxW,Y) — g(Vy W, X))

(¥)(g(

uY)(g(VzW, X) = g(VxW, Z))} = 0.
If we put X = ¢ in (3.12), then we have
9(VyU,Z) +g(V2U,Y) + 20( (Z2)n(Y) —9(2,Y))
+29(A%Y, Z) = 209(AY, Z) — du(§, Z)(n(Y) + rw(Y))
(3.13) —du(&,Y)(n(Z) + rw(Z)) = 2u(Y)u(Z)
—(En)Y)w(2) + u(Z)w(Y))
—m{u(Z2)dw(&,Y) +u(Y)dw(E, Z2)} = 0,

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying R¢¢ = ¢R¢ and Vyy.cRe =0

We will continue our discussions under the same hypothesis R¢¢p = ¢pR¢ as in
Section 3. Furthermore, suppose that Vv, ¢Re = 0 and then Vi Re = 0 since we
assume that p # 0. Replacing X by W in (2.17), we find

(Wa)g(AY, Z) — c(n(Z2)g(¢AW, Y ) + n(Y)g(¢ AW, Z))
(4.1) +ag(VwA)Y, Z) = n(AZ){g((Vw AE, Y ) + g(AGAW, Y )}
—n(AY {g(Vw A)S, Z) + g(ApAW, Z)} =

by virtue of Viy Re = 0. Putting ¥ = £ in this and making use of (2.13) and (3.6),
we obtain

(4.2) QAGAW + cd AW =0

because U and W are mutually orthogonal. From this and (2.16), it is seen that
Rep AW = 0 by virtue of (3.6), and hence Re AW = 0 which together with (2.16)
implies that

(4.3) QA*W = —cAW + cué + pla + g(AW, W) A€,



Jacobi operators with respect to the Reeb vector fields 549

which tells us that
(4.4) ag(A*W, W) = (u? — ¢)g(AW, W) + ap®.

Since a # 0, f = a and (3.2), we see that

(4.5) gATW, W) = (A== Z) g(AW, W) + .

Combining (3.5) to (4.2), we get
(4.6) aA?U = —(u® + ¢)AU — ¢(A — a)U.
If we apply puW to (3.3) and make use of (2.6), then we find
(4.7) 9(AU,U) = i (g(AW, W) + a — ).
Using (4.2), we see from (4.1)
(Vi A)X = — (Wa)AX + n(AX)(Viw A)é + g((Viw A)E, X) A€
— £ pw(X)BAW + g($AW, X))
for any vector field X, which together with (3.5) yields
(48) a(VwA)X = - (Wa)AX +n(AX)(VwA)§ + g((Vw A)¢, X) A¢
- g{w(X)AU Fu(AX)W + (A — a)(w(X)U + u(X)W)}.
Now, if we put X = W in (2.12), and make use of (3.5) and (4.2), then we find

(4.9) (Vi A)E = —¢Viw U + (Wa)é + i (a+2) AU+ (A -0}

Also, if we take the inner product (2.12) with A¢ and take account of (2.6), (3.2)
and (3.4), then we obtain

a(Xa) + p(Xp) = g(a€ + uW, (Vx A)E) — g(A°U + NAU, X),
which together with (2.4), (2.13) and (4.6) yields
c ¢
(4.10) (T A)E = — (a+ 5) AU = Z(A+ QU + V.

If we take the inner product (4.10) with & and make use of (2.13) and (3.6),
then we find

(4.11) Wa = E&p.
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Using (4.10), we can write (4.8) as
a(Vy A)X + (Wa)AX

1 c c

+;77(AX) {(a + a) AU + E()\ +a)U — uVu}
(4.12) ) . .
+ {(a+ E) u(AX) + < (A + a)u(X) - u(Xp) } A¢
+§{w(X)AU Fu(AX)W + (A — a)(w(X)U + u(X)W)} = 0.
Putting X = W in this, we get

2c 2cA
(4.13) a(VwAW + (Wa)AW — (W pn)AE + (a + a) AU + TU —uVu=0.
Combining (4.9) to (4.10), we obtain
2
1V U — p(Wa)é + uVp = 2 (a n 2) AU + (;ﬂ + ;A) U.
If we apply ¢ to this and make use of (2.8), (2.11) and (3.3), then we find
— uNVwU — P g(AW, W)E + p¢Vu

2
_9 (a+3) (MAE — A%) —#(u%CA) W,
« !
which together with (2.6) yields

pVwU = p¢Vi+ (2c — i) A€ +2p (a+ 2) AW

(4.14)
—(ap® + 2eX + pPg(AW, W))E.

Now, we can take a orthonormal frame field {eg =&, e1 =W, ea,...,€n, €nt1 =
per = (1/w)U, enia = dea, ..., ea, = de,} of M. Differentiating (2.6) covariantly
and making use of (2.1), we find

(4.15) (VxA)E + APAX = (Xa)€ + apAX + (X)W + uVx W,

which implies

2n

(4.16) pdivW =y 2 g(Ve,W,ei) = Eh — o= W
=0

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we
have
—2¢g(¢pX,Y) + 2g(ApAX,Y)
= (Xa)n(Y) = (Ya)n(X) + ag((pA + A9)X,Y)
(X p)w(Y) = (Vp)w(X)
+u(g(VxWY) — g(Vy W, X)).

(4.17)
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Putting X = ¢ in this and using (2.10) and (4.11), we have
(4.18) uVeW =3AU — aU + Va — () — (Wa)W.
Putting X = pW in (4.15) and taking account of (4.10), we get
- (a + 2) AU — 2()\ +a)U + pV i+ pAGAW
= p(Wa) + p(W)W + pad AW + >V W,
or, using (3.5) and (4.2),

2
(4.19) 2V W = —2 (a n g) AU — (uz + ;A) U+ uV i — p(Wa)é — (W ) W.

Now, putting X = U in (4.17) and making use of (2.6) and (3.3), we have
wg(VuW,Y) = g(VyW,U))
= (2 - Upu(Y) — (Ua)(Y)
+ 12n(AY) + 22 pw(AY) — 2pw(A%Y),
which together with (4.3) gives
pdw(U,Y) = (2cp = Up)w(Y) = {Uar + 2¢(A — a)n(Y)

(4.20) , c
{12 + 200 — a)g(AW, W)In(AY) + 24 ()\ + E) w(AY).

Because of (2.10) and (4.18), it is verified that
(4.21) pdw(€, X) = 2u(AX) — au(X) — (Ea)n(X) — (Wa)w(X) + Xa.
Using (2.11) and (3.7), we obtain
(4.22) du(¢,X) = (3X = 2a)n(AX) — 2pw(AX) — adn(X) + g(¢Va, X).
Using above two equations, (3.13) is reduced to
9(VxUY) +g(VyU, X))
=2c(g(X,Y) = n(X)n(Y)) — 29(A*X,Y) + 2ag(AX,Y)
+(67) (u(X)w(Y) + u(Y)w(X))
£ (2u(AX) + Xa — (Ea)n(X) ~ (Wa)w(X))u(Y)

(4.23) 1
+a(2u(AY) +Ya—(a)n(Y) — (Wa)w(Y))u(X)

+{(BA = 2a)n(AX) — 2pw(AX)

—aAn(X) + g(¢Va, X)}(n(Y) + 7w(Y))
+{(BX = 2a)n(AY) — 2pw(AY)

—aAn(Y) +g(¢Va, Y)}n(X) + rw(X)),
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where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we
find
(4.24) divU = 2¢(n — 1) + ah — TrA? + \(\A — «).
Replacing X by U in (4.23) and using (4.6) and (4.7), we find
9(VoU,Y) +g(VyU,U)
— (A —a)(Ya)+2 (2>\ —a+ 2) u(AY)
+ {ia + % +2A — ) (g(AW, W) + a — A)} u(Y)
+{u(Wa) = (A = a)éatn(Y) + p(Er)w(Y).
Since g(VxU,U) = u(Xp), it follows that
du(U, X) = —2u(Xpr) + (A - a)(Xa) +2 (22— a + 2) u(AX)
(1.25) {22422 a0 a)gam ) +a - 3 futx)
Hu(Wa) = (A = a)a}n(X) + p2(gr)w(X),
which implies that

(4.26) du(U,W) = =2u(Wpu) + (A — a)Wa + p? (7).

5. The Exterior Derivative of 1-form u

We will continue our discussions under the hypotheses as those stated in Section
Putting Z = U in (3.12), we find

—2pg((Vy A)X, W) + 2en(X)u(Y) — dU(U’X)( (Y) + 7w (Y))
—du(U,Y)(n(X) + 7w(X)) — dn(U, X)u(Y) — dn(U, Y)u(X)

+ 12 (g(VxEY) + g(VyE X)) + ((XT)W(Y) (Y7)w(X))

+ {1 (g(VXW.Y) + g(Vy W, X)) — dw(U, Y )u(X) — dw(U, X)u(Y)}
— (Un)(u(X)w(Y) + u(Y)w (X))—0~

Because of (2.1), (2.11) and (3.3), we see

dn(U,X) = (A — a)n(AX) — 2uw(AX).
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Using this and (2.4), above equation reformed as
= 2pg(Vw A)Y, X) = 2¢(n(Y)u(X) + n(X)u(Y)) — du(U, X)(n(Y) + Tw(Y))
— du(U,Y)(n(X) + 7w(X)) + p*(XT)w(Y) + (YT)w(X))
— (Un)(u(X)w(Y) + u(Y)w(X)) = {(A — a)n(AX) — 2pw(AX) }u(Y)
—{(A = a)n(AY) = 2pw0(AY ) }u(X) + p*(9(VxE Y) + g(VyE, X))
+r{*(g(VxW,Y) + g(Vy W, X)) — dw(U, Y )u(X) — dw(U, X)u(Y)} =
Substituting (4.20) into this, we obtain
2u9((Vw A)Y, X)
= —2c(n(Y)u(X) + n(X)u(Y)) — du(U, X)(n(Y) + 7w (Y))
— du(U,Y)(n(X) + 7w(X)) + @2 (XT)w(Y) + (Y T)w(X))
— (Un)(u(X)w(Y) +u(Y)w(X)) = {(A = a)n(AX) — 2pw(AX)}u(Y)
—{(\ = a)n(AY) = 2pw(AY ) }u(X) + 1*(9(VxE Y) + 9(VyE, X))
+ 72 (g(VxW,Y) + g(Vy W, X))

- éu(X){@c,u ~Upw(Y) ~ (Ua+ 2¢(A — a)n(Y)

— (1% + 20\ — Q)g(AW, W)}n(AY) + 2u ()\ + g) w(AY)}

— 2u(¥){ (e~ Up(X) ~ {Uar+ 2¢(r — o) }n(X)
C {200 — Q)g(AW, W) I(AX) + 2u (A + g) w(AX)}.
Combining this to (4.12), we have
—2p(Wa)g(AY, X)
+2n(AY) {~ (o + a) u(AX) = < (a+ Au(X) + pXp}
+2{= (a+ =) u(AY) = S(a+ Nu(¥) + u(Y ) } n(AX)
—@{( X)w(Y) + uw(AY )w(X) + (A — a)(w(X)uY) + w(¥)u(X))}
=~ Dac(n(Yyu(X) +n(X)u(Y)) - adu(U, X) (V) + 7w(Y))
—adu(U,Y)(n(X) + mw(X)) + ap?(XT)w(Y) + (Y 7)w(X))
(5.1) —a(UT)(u(X)w(Y) +u(Y)w(X)) — p*(n(AX)u(Y) + n(AY Ju(X))

(Y
+20p(w(AY Ju(X) + w(AX)u(Y)) + ap?(g(VxEY) + g(VyE, X))
+2(g(VxW,Y) + g(Vy W, X))

—u(X){ (2o — Uy (Y) = (Ua +2¢(A = a))n(Y)
— (12 + 200 — a)g(AW, W)y (AY)+2M()\+ )w(AY)}
~u(Y){ @en = Upyw(X) = (Ua +2¢(A — a))n(X)

(
)
(
(4 4200 = Q)g (AW, W))n(AX) + 20 (A + = ) w(AX) }.
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If we put Y = W in (5.1) and take account of (2.1), (3.5) and (4.19), then we find
= 2p(Wa)w(AX) + p*(Xp)
F 20V )(AX) = 2 {u(AX) + (0 - a)u(X))
= —pdu(U, X) — adu(U,W)(n(X) + rw(X))
T ap2((X7) + (Wr)w(X)
= pH{(Wa)n(X) + (Wuw(X)}
+ (Uu —a(Ur) - %MQ(AW, W)) u(X),
or, using (4.25) and (4.26)
2u(Wa) AW — 2cplU + {u(\ — a)éa — 3> Wa — ap?(€1)}¢
— {1 Wp) + 7> (Wa) + 20° (Er)}W + 1>V — p(A — @) Va

—2u(2\ — @) AU — p {ia + 2\ — ) g(AW, W) — 2(\ — a)Q} U

2
+ o (W)W + V1) + {Uu —a(Ur) — %g(AVV7 W)} U =0.
By the way, since at = u, we find
(5.2) apuVT =puVu — (A —a)Va.

Using this, above equation is reduced to
uVp— (A= a)Va

(53) =@ -aaU+{(A=a+S)gaW, W)~ (A~ +c}U
—(Wa)AW + 2u(Wa) — (A — a)éaté + (A —a)2Wa — 7(§a))W.
If we take the inner product (5.3) with W, then we get

(5.4) W(Wa) = {30\ — @) — g(AW, W)} Wa — 7(A — a)éor

Also, taking the inner product (5.3) with U and making use of (4.7), we obtain
Up Ua c

(63 = (3)\ 2+ &) GAW, W) + (A — a)(2a — 3)) +c.

On the other hand, replacing Y by W in (4.23) and using (4.3), we find
9(VxU, W) +g(VwU,X) = Eg(6Va, X) — (er)u(X)
—{uBA = 20) — 2ug(AW, W) + g(6Va, W) }(n(X) + Tw(X))
+2 ()\ — 2 — 2) g(AW, X) — 2cw(X)

2c

+ g(4a — 3X\ + 2g(AW, W))n(AX) + u <)\ + a) n(X)=0,
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or using (4.14),

9TV W)+ 9(6Vp, X) — > g(6Va, X)
—(m)u(X) +2(A — a)w(AX)

5.6
(5-6) Jr{({laJr()\a)(E)a6)\+49(AWW))}W(X)

+ {U:z + (4o — 5A + 3g(AW, W))} n(X)=0.

By the way, applying (5.3) by ¢ and making use of (2.6), (3.3) and (3.5), we

have

ndVi — (A — a)¢pVa
(Wa)AU + u(¢T)U 4 122X\ — )€ — p(2\ — ) AW

1
I
—u{()\—a—i-g)g(AW,W)—()\—a)(3)\—2a)+c}W.

Substituting this into (5.6), we find

g(VxU,W)
Wa
- = FU(AX) + aw(AX)
' +{3()\—a)2+(ig(AT/V, W)—i—c—Uaa—?)()\—a)g(AVV,W)}w(X)

#{aur = a - gtawwy - = o).

On the other hand, (4.12) turns out, using (2.4), to be

a(Vx AW
- %(n(X)U +2u(X)€) — (Wa)AX
+ %n(AX) {nVp=(a+ Sy av - S+ o)
+ % {ixXp) = (a+ £) u(aX) - S0+ agu(x) | 4¢

- g {w(X)AU + w(AX)W + (A — a)(u(X)W + w(X)U)} .
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If we apply by ¢ to this and make use of (3.3), then we find
—adp(Vx A)W = (Wa)pAX + can(X)W — (Xu)U

(5.8) +%77(AX) {(a + 2) {(A—)A§ — pAW} — gu(A +a)W — uWu}

s f (o £ utax) + 220 fU+ Culx) (¢ - wamw)

Now, if we put Z = W in (3.12), then we find
29(6(Vy AW, X)
= 2{(w(A%Y) — cw(Y))n(X) — w(AY)n(AX)}
+du(W, X)(n(Y) + 7w(Y)) + 7du(Y, X) + (W) (w(Y)u(X) + w(X)u(Y))
+ (g(VwU,Y) + g(VyU W) (n(X) + 7w(X))
+ %{U(AX) + (A= a)u(X)}u(Y)
+ (Y7)u(X) — (X7)u(Y) + 7(u(Y)g(Vw W, X)
+u(X)g(Vw W, Y)).
Using (2.1), (2.10), (3.5) and (3.8), we can write the above equation as
2ag(op(Vy A)W, X)
— pdu(Y, X) — 2e0(X)w(AY) + 2p(c + o + ag(AW, W))n(X)u(¥)
9(ap? + p2g (AW, W) — ca)(X u(Y)
—2am(AX)w(AY) + a(W7)(w(X)u(Y) + w(Y)u(X))
+ag(VwU, X)(n(Y) + 7w(Y))
+ag(VwU,Y)(n(X) + 7w(X)) — g(VxU, W)n(AY)
+9(VyU, W)n(AX) + %{U(AX) + (A — )u(X)tu(Y)
+ a((Y7)u(X) = (X7)u(Y)) + p(u(X)g(Vw W, Y) + u(Y)g(Vw W, X)),
or using (5.8),
pdu(X,Y)
= (Wa)g((64 + A§)X,Y) + 22 p(w(X)w(AY) — w(¥ )uw(AX))
+1(AX)g(¢Vp,Y) —n(AY)g(eVpu, X)
+ = (u(X)u(AY) = 0¥ Ju(AX) = (Xpu(Y) + (Via)u(X)
+ a((X7)u(Y) — (Y7)u(X))
+9(Vy U, W)n(AX) — g(VxU, W)n(AY)
+{2ca = 2eX — pP(a + g(AW, W)} (n(X)w(Y) = n(Y)w(X)),
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which together with (5.2) and (5.7) yields

ndu(X,Y)

= (Wa)g((9A + A$)X,Y) + 2

+%(n(AX)u(AY) — (AY Ju(AX))

(w(X)w(AY) —w(Y)w(AX))

«

(5.9) +n(AX)g(dVp,Y) = n(AY)g(eVu, X)

+a(n(AX)w(AY) — n(AY )w(AX))

+%(U(X)U(AY) —u(Y)u(AX)) + g((Xa)um - (Ye)u(X))

H (1 + )g(AW, W) + ap® — ca +2e A ((X)w(Y) — n(Y )w(X)).
Putting X = ¢e; and Y = ¢; in this and summing up for i = 1,2, -+ ,n, we obtain

Y du(deier) = (h—a—g(AW,W)Wa — u(Wp),
=0

where we have used (2.6)—(2.8), (3.5) and (4.7). Taking the trace of (2.12), we
obtain

2n
> 9(6Ve,Uei) = o —Eh.

i=0
Thus, it follows that

(5.10) (h — o) = p(Wp) + (g(AW, W) + o — h)Wa,
which together with (4.16) gives
(5.11) p2(diviV) = (g(AW, W) + a — h)Wa.

We notice here that

Remark 5.1. If AU = oU for some function o on €, then AW € span{&, W} on
Q, where span{&, W} is a linear subspace spanned by & and W.

In fact, because of the hypothesis AU = oU, (3.5) reformed as
AW = (c + A — a)U,
which implies that AW = pé + (0 + A — a)W € span{¢, W}.
Now, we prepare the following lemma for later use.

Lemma 5.2. Let M be a real hypersurface of My(c),c # 0 which satisfies
Rep = ¢Re and Vyy eRe = 0. If AW € span{¢, W}, then Q = 0.
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Proof. Since (3.5) and AW = u& + g(AW, W)W, we have
(5.12) AU = (g(AW, W) + a — \)U.
From (4.2) we also have
G(AW, W)(aAU + cU) = 0.

Now, suppose that g(AW, W) # 0 on Q. Then we have « AU + ¢U = 0 on this
subset, which together with (5.12) gives

(5.13) u? = ag(AW, W) + c.

From this and (2.16) we have R¢W = 0 and consequently R¢ A = 0 on the subset
because of (2.6) and (2.16). If we take (3.1) by R¢ and using ReU = 0 and R¢ A =0,
we obtain R¢(A¢p — @A) =0, that is, R¢(L¢g) = 0 on the subset, where L¢ denotes
the operator of the Lie derivative with respect to {. Owing to Theorem 5.1 of [5],
it is verified that A¢ = o, a contradiction. Therefore we have the following

(5.14) g(AW, W) =0
on 2. So we have
(5.15) AW = e,
From (5.12) and (5.14), we get
(5.16) AU = (a = N)U.
Differentiating (5.15) covariantly, we find
(VxA)W + AV W = (Xp)§ + pVx&.
Taking the inner product with W and making use of (2.11) and (5.16), we have
G((Vx AW, W) = 201 — a)u(X)
Using (2.4) it reformed as
(5.17) (Vi AW = 2(\ — a)U.
On the other hand, (4.13) is reduced, using (5.16) and (5.17), to
(5.18) (1* +20)U = —pu(Wa)& + (W) AE + pVp.
Taking the inner product with W, we have

(5.19) Wy =0.
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Hence, it follows from (5.18) that
(5.20) pV = p(Wa)é + (p* + 2¢)U,
which shows that for any vector fields X

X p) = p(Wan(X) + (u® + 2c)u(X).

Differentiating this covariantly and using (2.1), we have

(Yp)(Xp) + p(Y (X p))

=Y (u(Wa))n(X) + p(Wa)g(¢AY, X)
+ uWan(Y) + 2(p* + 20)u(Y))u(X) + (u* + 2¢)g(Vy U, X)
+{p(Wa)n(Vy X) + (u? + 2¢)u(VyU)}.

Taking the skew-symmtric part of this, we find

((Wa))n(X) = X ((Wa))n(Y)
+(u(Wa))g((9A + Ad)Y, X)
+2p(Wa)(n(Y)u(X) = n(X)u(Y))

(1 +20)(g(Vy U, X) — g(VxU,Y)) = 0.

)-<

(5.21)

+

Replacing Y by ¢ in this, and using (2.10) and (5.17), we have

X(p(Wa)) = 2u(Wa)u(X) =£(u(Wa))n(X) + (u(Wa))u(X)
+ (12 4 ¢)(9(VeU, X) — p?n(X)).

Substituting this into (5.21), we obtain

p(Wa)(u(Y)n(X) — w(X)n(Y))

+ (12 +2¢)(g(VeU, Y)n(X) = g(VeU, X)n(Y))
+ 1n(Wa)g((9A + Ap)Y, X)

+ (1 +20)(g(VyU, X) — g(VxU,Y)) = 0.

Putting Y = U in this, and using (2.8), (3.3), (4.11), (5.15) and (5.16), we obtain

(12 +2¢)(9(VoU, X) — pu(X p))

(5.22) +(p? + 20)(Wa)n(X) + p2(A = @) (Wa)w(X) = 0.

On the other hand, putting ¥ = U in (5.9) and making use of (5.14), (5.15)
and (5.19), we have

g(VoU, X) — u(Xp) =200 —a)(Wa)w(X) + %U(X) —(A—a)Xa.
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Combining this to (5.22), we have

(1 + 2c) {2@ —a)(Wa)w(X) + %u(X) — (A= a)Xa}

T+ 26) (Wa)n(X) — p2(A - a)(Wa)w(X) = 0.
If we put X = W in this, then we have

(12 +2¢) (N — a)Wa = (p? + 4c)(\ — a)Wa,
which, together with A # «, shows that
(5.23) Wa = 0.
Thus, (5.20) becomes
(5.24) uVp = (u* +20)U,
which implies
(5.25) ¢V = —(u* + 2c)W.
Using (5.23), we can write (5.21) as
(1* +2¢)(9(VyU, X) = g(VxU,Y)) = 0.

Now, suppose that u? + 2¢ # 0. Then we have g(Vy U, X) — g(VxU,Y) = 0.
Using (5.14)—(5.16), (5.20), (5.23) and (5.25), we can write (5.9) as

(12 + ) (w(X)n(Y) —w(Y)n(X)) =0,

which implies p? + ¢ = 0. So p is constant. Thus, (5.23) becomes p? + 2c = 0, a
contradiction. Therefore, we see that p? + 2¢ = 0.

Accordingly we see that p is constant, which together with (5.4) yields o = 0.
Hence (5.3) is reduced to

(5.26) w2Va = {p?(3\ — 2a) — ca}U.
Taking the inner product this to X and differentiating covariantly, we find
w2 (Y (Xa)) ={p?(3Y A - 2Ya) — catu(X)
+ {12 (3\ — 2a) — ca}(g(VyU, X) + g(U, Vy X)).
The skew-symmetric part of this is given by
3 (Y N)u(X) — (XN)u(Y)) + (26° + o) (Xa)u(Y) — (Ya)u(X))
+ {1 (3X = 20a) — ca}(g9(Vy U, X) — g(VxU,Y)) = 0,
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which implies that VA = xU for some function x, where we have used (4.24) and
(5.26). Thus it follows that

{/1’2(3)‘ - a) - Ca}(g(vYUvX) - g(VXU, Y)) =0.

If g(VyU,X) —g(VxU,Y) = 0, then similarly as above we have a contradiction.
Thus we have p?(3\—2a)—ca = 0, which together with p?+2c = 0 gives 2A—a = 0.
i.e. 2u% + a? =0, a contradiction. Therefore Lemma 5.2 is proved. O

Lemma 5.3.

a2G(VA = Vh) = —4pu(si® + ¢) (AW — u€) + & (h = \)(Wa)U + fW,

!
I
for some function f on (.

Proof. Putting X =Y = ¢; in (3.12), summing up for ¢ = 0,1,--- ,2n and using
(2.1) and (2.4), we find

Tr(VyzA) —2¢(n — 1)n(Z) + (TrA*)n(Z) — hn(AZ)
+9(VeU,2) — g(VzU, &) + 7(9(VwU, Z) + g(Vu W, 2))
+ (divD)(0(Z) + Tw(Z2)) + g(($A + AU, 2)

+ (Wru(Z) + (Un)w(Z) + 7(diviV)u(Z) = 0,

or using (2.10), (3.3), (3.7) and (4.24)

OVa — 9V + L (ViU + VW) — 40 AW + (W7 -+ 7(div V) U
(5.27) + (Ut +7(divU) + p(4X —3a — h)) W
(A — a)(A+3)E = 0.

On the other hand, combining (4.20) to (5.8) and making use of (5.7), we find
1
VoW = {46V~ (A - a)o¥a)
c
- (§T)U—|—2<2)\—a+a) AW
c
+{-ma-3n+e- (A+ a) g(AW, W)} W

+,u{g(AVV,W)+3a—5)\—2aC}§.
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Substituting this and (4.14) into (5.27), we find
ad(Va — Vh) + 2uéVi — (A — a)¢Va
= 4u (a - 2) AW + (u(Er) — a(Wr) — p(diviV)) U
(5.28) —4(\ = o) (1? + )€ — ((UT) + p(divIV)) W
—,u{3c + (A —a)(a—3))
—()\ + g) G(AW, W) + da — 32 — ha}W.
From (4.11), (4.16) and (5.2) we have

ap (u(€r) — a(Wr) — p(diviV)
=202 (Wa) — p(X = 2a)fa — ap(Eh).

By the way, using (5.4) and (5.10) we have
A —2a)éa + ap(Eh) = a3\ — 2a — h)Wa.
Thus, we have
(5.29) ap (w(Er) — a(Wr) — p(diviv)) = a(h — \)Wa.
Differentiating (3.2) covariantly, we find
(5.30) 2uVu = (A —=2a)Va+ aVa.
Using this and (5.29), the equation (5.28) reformed as
a2$(VA — Vh) = —4p(p® + ¢) (AW — pé) + %(h —N(Wa)U + fW,
where we have put
f :a,u{ha +40% —8aX + 3)\? — 3¢
c . a
+ ()\+ a) g(AW, W) — divU — #(UT)}.
This completes the proof of Lemma 5.3. O

6. Lemmas

We will continue our discussions under the same hypotheses as those in Section
4. Further we assume that TrR¢ is constant, that is, g(S¢,€) is constant. Then,
from (2.5) we see that 8 — ha is constant, i.e.

(6.1) al(h—\) = C,
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where C' is some constant. Differentiating this covariantly, we have
(6.2) (A=h)Va+ a(VA—Vh) =0.
So we have ap(VA — Vh) = (h — X\)¢pVa. Thus, from Lemma 5.3 we find

alh—A)

o 0(Va— (Wa)W) = —4(u* + ) (AW — pg) + %fW,
which tells us that

‘W(Ua) — 44+ g(AW W) - 2.

Combining the last two equations, it follows that

alh—A) Ua

1) (Va — (Wa)W — IJQU>
= —4(p? + ) (AW — & — g(AW, W)W).

(6.3)

Applying this by ¢ and using (3.5), we find

(6.4) alh —X) (Va — (a)s — (Wa)W — ZSU)

=4(u® + o) {AU + (A — )U — g(AW, W)U }.

Taking the inner product with AW to this, and using (4.6), (5.4) and « # 0, we see
(6.5) (h = A)(g(AW, Va) — p(§a) — g(AW, W)(Wa)) = 0.

First of all, we prove the following;:

Lemma 6.1. h — A # 0 on Q.
Proof. If not, then we have from (6.4)

(4* 4+ ){AU — (g(AW, W) + a = \)U} = 0

on this subset. Because of Remark 5.1 and Lemma 5.2, it is verified that p?+c =0
on the set and hence p is constant. Accordingly we see that Wa = 0 because of
(4.11) and hence éa = 0 and {7 = 0 by virtue of (5.2) and (5.4). Thus, (5.3)
reformed as

A —a)Va + 2\ — a)AU + {c — (A — a)?}U =0,
which together with p2 4+ ¢ = 0 implies that

(6.6) Xa = (X)) +eg(AU, X)
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for any vector field X, where we have put ce = a? — 2c. Differentiating (6.6)
covariantly with respect to a vector field Y and taking skew-symmetric part, we get

(Y N)u(X) = (XN)u(Y) + Mg(VyU, X) = g(VxU,Y))
+ (Ye)u(AX) — (Xe)u(AY)
+e{ep(n(YV)w(X) — n(X)w(Y)) + g(AVyU, X) — g(AVxU,Y)} = 0.

where we have used the Codazzi equation (2.4). Since éo = 0 and (6.1), by replacing
X by £ in this, we get

—AMg(VeU,Y) +g(Vy§,U))
+e(g(VyU,af + pW) — cpw(Y) — g(VeU, AY)) = 0,

where we have used (2.6), which together with (2.10) and (5.9) implies that
(6.7) eAV U + AVeU + uAAW € span{{, W}.
On the other hand, we can write (3.7) as
VeU = —ple + 3)AW + (A — a)(e + 2) Ag,

where we have used (3.3) and (6.6), which together with (2.6), (4.3) and the fact
that u? + ¢ = 0 yields

AV U = — p(A— a)AW + {c — (A — a)(e + 3)g(AW, W) } AL
—c(A—a)(e+3)¢

Combining the last three equations, it is seen that
{2\ — a)e + 2A} AW € span{&, W},

which shows that (2\ — a)e + 2\ = 0 by Lemma 5.2. So we have (2\ — a)(a? —
2¢) + 2¢) = 0, a contradiction because of u? + ¢ = 0. This completes the proof. O

If we combine (6.2) to (5.30), then we have

(6.8) 2uVp = (h—2a)Va+ aVh.

If we apply this by &, then we find

(6.9) 2u(En) = (h - 20)¢a + a(¢h).

From (4.11), (5.6) and (5.12) we get (h — A\)(1(€a) — a(Wa)) = 0 and hence
(6.10) p(éa) = a(Wa)

by virtue of Lemma 6.1, which together with (6.9) yields

(6.11) w(€h) = (2A = h)Wa.
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From (5.2) and (6.10) we have {7 = 0. Thus, using (6.8) and (6.10) we verify from
(5.3)

1
2
(6.12) :(2)\—a)AU+{()\—a+§)g(AW7W)—(/\—a)2+c}U

F(Wa{u§+ A —a)W}.

(hVa + aVh) = A\Va + (Wa) AW

Because of Lemma 6.1, (6.5) implies that
(6.13) g(AW,Va) = (a+ g(AW, W))Wa,

with the aid of (6.10). Applying (5.3) by AW and making use of (4.3), (6.10), (6.13)
and &7 = 0, we find

pg(AW, V) — (A = a)(a + g(AW, W))Wa + g(A*W, W)Wa
= {1? + (A — )g(AW, W)} Wa,

which together with (4.5) gives
(6.14) pag(AW, Vi) = {(1? + ¢)g(AW, W) + ap®}Wa.
In the next place, we will prove that

Lemma 6.2. Sa=Wa=Wu=Eh=A=WA=0and {(g(AW,W)) =0 on Q.
Proof. Differentiating (4.4) covariantly, we get

(6.15)  g(A*W,W)(Xa) + (X (g(A*W,W)))
= 2ug(AW, W)(Xp) + (1* = ) (X (g(AW, W) + p* (X ) + 2pe(X p).

Replacing X by £ in this, and using (4.11) and (6.10), we find
(6.16)  a(E(g(A*W, W) :%oﬁ — (AW, W) Wa + 2u(a + g(AW, W) Wa
+ (1® = ) (E(g(AW, W))).

By the way, using (4.10), (4.18), (6.10) and (6.13), we verify that £(g(AW, W))
= W, which together with (5.4) and (6.10) yields

1
Elg(AW, W) = {202 — a) = g(AW, W)} Wa.
Substituting this and (4.5) into (6.14), we find

(617)  SE(g(APWW)) = {;gmw, W)+ pa+ £ - c)} Wa.
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On the other hand, we have
1

S (X(g(A2W, W) = g(Vx A)W, AW) + g(A*W, VX W),

which implies

(6.18) %a(X(g(AQW, W))) =ag((Vw A) X, AW) + 2cau(X) — cg(AW,V xW)
+ cu(AX) + ala+ g(AW, W) u(AX),
where we have used (2.6), (2.11) and (4.3).

By the way, putting X = AW in (4.12) and making use of (2.6) and (6.14), we
obtain

a(Vw A) AW
= —(Wa)A*W
+ (a+ g(AW, W) {f (a + 2) AU — é()\ +a)U + uV,u}
b {0 + g (AW, W) + i} (Wa A€
— —g(AW.W){AU + (A~ )U},
which implies
0g((Tw AAW.€) = L+ (1 + g (AW, W)}

because of (2.6) and (4.11). If we replace X by & in (6.16) and make use of (4.11),
(4.18) and (6.17), then we obtain

(1 = ¢ — ag(AW,W))(Wa) =0

because of A — a # 0.

Now, suppose that Wa # 0 on Q. Then since A # «, we have ag(AW, W) =
u? — ¢, which together with (3.2) and (4.7) gives ag(AU,U) = —cu?. From this
and (4.6) we verify that a?g(A%U,U) = c¢*u?. Using the last two equations it is
seen that ||cAU + cU||?> = 0 and hence AU + cU = 0. Thus, (3.5) is reduced
to upAW = (A — o — ¢/a)U, which shows that AW = u& + g(AW, W)W on this
subset. According to Lemma 5.2, we have Q =}, and hence Wa = 0 on Q. Thus,
it is clear that Wy = 0, éa = 0, €h = 0 and €\ = 0, where we have used (4.11),
(5.6), (6.2), (6.9), (6.10) and (6.11). Since (3.2), Wa = 0 and Wy = 0, we have
WA =0. Hence Lemma 6.2 is proved. O

Because of Lemma 6.2, we can write (6.4) as

alh - A) (v@ - Z(;U)

= 4(p* + ){AU — (A — a — g(AW, W)U},
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which tells us that

1
(6.19) Za(h — MVa = (u* + ¢)AU + 60U,

where the function 6 is defined by

w0 = "X ) 2 1 yg(av).

We also have from (5.4)
(6.20) uVip—(A—a)Va = 2\ — a)AU + pU,

where we have put

(6.21) p=(r-a+ 2) GAW, W) — (A — a)? +c.

Remark 6.3. 12+ ¢ # 0 on .

If not, then we have u? +c = 0 and hence y is constant on this subset. So (6.19)
and (6.20) are reduced respectively to

w*Va = (Ua)U,
A —a)Va+ 2\ —a)AU +{c— (A —a)*}U =0

because of Lemma 5.2. Combining these two equations, we obtain
2\ — a)AU = {(/\oz)2 —c— Ua} U.

Suppose that 2\ — a = 0 on this subset. Then, the equation p? + ¢ = 0 becomes
a? —2¢ = 0, a contradiction. Thus we have 2\ — a # 0. Owing to Remark 5.1 and
Lemma 5.2, above equation produces a contradiction. Hence u? + ¢ # 0 on € is
proved.

Lemma 6.4. (2\ — a)0 = (u® + ¢)p on Q.

Proof. From (6.17) and (6.18) we have
1 2 | p—
Za(h - AN2A\—a)Va— (u° +¢) §Vu —(A—a)Va
={2A =) — (u* + c)p}U.

Using the same method as that used to derive (6.7) from (6.6), we can deduce from
this that

(22 — Q)(E0)U +{(2A — )8l — (42 + )p} (VU + pAW) =0,
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where, we have used (2.10), (6.1) and Lemma 6.2. If we take the inner product with
U to this and make use of {u = 0, then we get (2A — «)£0 = 0 and hence

{2N— )0 — (i + ¢)p}(VeU + pAW) = 0.
If 2\ — )0 — (u® + ¢)p # 0 on Q, then we have
VeU + pAW = 0.

We discuss our arguments on such a place. Using (3.7), the last equation can be

written as
PV = 2uAW + (200 — 3N) A€ + a €.

Applying this by ¢ and taking account of (3.5) and Lemma 6.2, we obtain
(6.22) Va=-2AU + A\U.

Combining this to (6.19), we obtain
, 1 1
WP+ e+ salh—A) AU = § 2aM(h=X) =0 U.

Because of Remark 5.1 and Lemma 5.2, we conclude that 2 +c+(1/2)a(h—\) = 0.
Hence it follows from (6.1) that p is constant. Thus, (6.20) reformed as

(A= a)Va = (a—2)\)AU - pU,

which together with (6.22) implies that AU = {A(aw — A) — p}U. Therefore we
verify that (2\ — )0 — p(u% + ¢) = 0 by virtue of Remark 5.1 and Lemma 5.2. This
completes the proof. O

Lemma 6.5 Let span{&, W} be the linear subspace spanned by & and W. Then
there exists P € span{§, W} such that

g(AW,VxU)

= Zw(a2X) = {i + (A= a+ =) g(AW, W) f w(AX) + g(P, X).

Proof. Putting Y = AW in (5.9) and using (3.6), (4.3), (6.13) and Lemma 6.2, we
find
pdu(X, AW)
= Z g (AW, W) (X) — g(AW, W)w(AX)}
+n(AX)g(@Vi, AW) — p(a + g(AW, W))g(¢Vp, X)
+a{g(A2W, W)n(AX) — u(a+ g(AW, W))w(AX)}
+{(1? + )g(AW, W) + ap? — ca + 2eA}(g(AW, W)n(X) — pw(X)),
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which enables us to obtain
g(AW, VxU) — g(VawU, X)
=—a (a + g(AW, W) + %Q(AW, W)) w(AX)
— (a+g(AW, W))g(6Vp, X) + g(P1, X),

for some Py € span{{, W}. If we replace X by AW in (4.23) and make use of (3.5),
(4.3), (6.14) and Lemma 6.2, then we get

g(VxU, AW) + g(Vaw U, X)

=2cw(AX) + 2aw(A2X) — 2w(A3X)
+ (1t Eg(aw, w)) {83 = 20)9(AX) - 2p00(AX)
—a M (X) + g(¢Va, X)}

n {u(3>\ ~20)(a + g(AW, W) — 2g(AW, W) — ads
- L4 + (- ) Va>}<n<x> T rw(X)) - 2epm(X),

which shows that

g(VxU AW ) + g(VawU, X)
= —2w(A3X) + 20w(A%X) + 2cw(AX)
—2(A — a)(a + g(AW, W))w(AX)

+ E(a+ g(AW, W))g(6Va, X) + g(P, X),
for some P, € span{¢, W}. Adding to the last two equations, we obtain

29(AW,VxU) = — 2w(A*X) + 20w(A%X) + 2cw(AX)
—2A—a)(a+ g(AW, W) w(AX)

-« (a + g(AW, W) + %Q(AVV, W)) w(AX)
— (a+g(aw, ) (6Vp - Eova)

for some P € span{{, W}.
By the way, applying (6.20) by ¢, and using (2.8) and (3.4), we find

(6.23) SV — g(bVa — (2A— ) {—AW + pé + (A — )W} — pW.
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Because of (4.3), we have
AW = — §A2W + (A —a)(a+ g(AW, W) AW
+u (a + < 4 g(aw, W)) A
@
Combining the last three equations, we obtain

9(AW, VxU)
= Zw(A2) = {2 + (A= a+ =) g(AW, W) fw(AX) + g(P1, X)

for some Py € span{&, W}. The completes the proof. O
Remark 6.6. Wp =0 on (.

In fact, we have
W(g(AW,W)) = g(Vw A)W, W) + 29(AW, Vi W),
which together with (4.13) and Lemma 6.2 yields
W (g(AW, W)) = 2g(AW, Vi W).

However, if we take the inner product with AW to (4.19) and make use of Lemma
6.2 and (6.14), then we obtain g(AW, VW) = 0. So we have W (g(AW, W)) = 0,
which connected to (6.21) and Lemma 6.2 gives Wp = 0.

7. Proof of the Main Theorem

We will continue our discussions under the same assumptions as those in Section
6. Taking the inner product X to (6.20) and differentiating covariantly, we have

(Y ) (Xp) + ( (Xp) = (YA =Ya)(Xa) = (A = a)(Y(Xa))
= (2(YA) = Yju(AX)

+ A=) (g(Vy AU, X) + g(AVy U, X))
+

Yp)u(X) 4+ pg(VyU, X) + g((2A — @) AU + pU, Vy X).
Taking the skew-symmetric part of this and using (2.4), we find

(XN (Ya)— (YN (Xa)
+H(2(X)) — Xa)u(AY) — (2(Y'A) — Ya)u(AX)
(7.1) = cp(2A = a)(n(Y)w(X) = n(X)w(Y))
HY )u(X) — (Xp)ulY) + pla(Vy U, X) — (T xU.Y)).
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where we have used (2.4) and (2.8). Differentiating (6.21) covariantly and taking
the inner product £ to this, it follows from Lemma 6.2 that £p = 0. Putting Y = ¢
in (7.1) and using (2.6) and £p = 0, we find

cpn(2A — a)w(X) — (2A — a){g(a& + pW,VxU) + g(VeU, AX)}
= p(g(VxU,§) — g(VeU, X)) =0,

or using (2.10), (5.7) and Lemma 6.2,
(7.2) (22X — @)AV U + pV U + pupAW € span{{, W}.

If we put Y = W in (7.1) and take account of Lemma 6.2 and Remark 6.6, then we
have

+p(g(VxU,W) = g(VwU, X)) = 0.

By the way, putting Y = W in (5.9), we have
g(VxU W) —g(VwU, X)
= (0 2) w(Ax) ~ 9(6¥ X) + 9(72.X)
for some Ps € span{&, W}, which together with Lemma 6.5 and (7.3) implies that
2\ — @) {gAQW - (;ﬁ + ()\ —a+ g) g(AW, W)) AW — AVWU}
—p { <a + f) AW + ¢Vu} € span{&, W}.
It follows from this and (4.14) that
(2A — @) ApV + ppV i
(22 —a) {éAQW + (/\ —a+t g) g(AW, W)Aw}
+p (a + 2;) AW € span{{, W}.

If we take account of (4.3), (6.21) and (6.23), then the last equation can be written
as

g(%\ — @) APV + pdVi + (2 — a)? (A —a+ 2) AW

(7.4) +2h = a) {S AW+ (A= a)? = AW |

+p (a + 2(;) AW € span{¢, W}.
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On the other hand, from (3.7) we have
AVeU = u(3\ — 20) AW — 3uA2W + 242 A€ + A¢Va,
where we have used (2.6). Substituting this into (7.2), we find

(2A — a)ApVa + ppVa — 2up AW
— 2\ — a)u{3A2W + (2a — BN)AW} € span{¢, W}.

Combining this to (7.4), we obtain
O\ — a) {—”Wa + 20AW + (2X\ — @) (3A2W + (2a — SA)AW)}
N
oV + (2) — a)? ()\ —a+t 5) AW + S(21 — ) A2W
«Q Q
2
LN —a) (A — )2 — c}AW +p (a + Of) AW € span{¢, W},

which together with (4.3) and (6.23) implies that
{200 — (20 — ) (4 + )} AW € spanf€, W},

that is,
{200 — (2) — @) (42 + ) HAW — i€ — g(AW, W) = 0.

According to Lemma 5.2, we see that
(7.5) 2pa = (2 — a)(p? + ¢).

From this fact and Lemma 6.4, we see that 2af = (u? +¢)? by virtue of 2\ — « # 0.
Thus, (6.19) is reduced to

(7.6) kVa = 20AU + (pi* + c)U
with the aid of Remark 6.3, where we have put

a?(h—N)

TR
Differentiating this covariantly and taking the inner product with &, it follows from
(6.1) and Lemma 6.2 that {x = 0.

As in the same method as that used from (6.6) to drive (6.7), we can deduce
from (7.6) that

209(AVeU, X) + (12 + ¢)g(VeU, X)
= p{—2caw(X) — 20*w(AX) — (1* + )w(AX) + 2ag9(VxU, W)},
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which together with (5.7) implies that
(7.7) 20AVU + (p® + ¢)VeU + pu(p® + ¢) AW € span{¢, W}
On the other hand, applying (7.6) by ¢ and using (2.6) and (3.3), we find

E(bVoz = 20 AW + (pi® + )W + 2aué,
u

which together with (4.3) yields
SAgbVa = (2 + ¢) AW — 2ug(AW, W) AE — 2cpé.

From Lemma 6.1 we have x # 0 and hence combining the last two equations, it is
verified that

(7.8) 20A¢Va + (u* + ¢)¢pVa € span{¢, W}.
By the way, applying (3.7) by A and using (4.3), we find
%Amﬂ+uﬁ+@mﬂ—zm<w—zm+f)mv
+ 3u(p? + ) AW — 20ApVa — (u? + ¢)pVa € span{€, W},
which together with (7.7) and (7.8) gives
(2u% 4+ a® + 2¢) (AW — pu& — g(AW, W)) = 0.

Owing to Lemma 5.2, we see that 2u2 + a2 + 2¢ = 0, which implies that 2uVu +
aVa = 0. Hence (6.20) reformed as

(7.9) Vo + 24U + U=0

p?+c
o

by virtue of 2\ — a # 0 on Q, where we have used (7.5). Combining this to (6.19),
we have

{u2 +c+ %a(h — )\)} AU = i{49 + (h = A)(u* + ) }U.

According to Remark 5.1, it follows that u? +c+ (1/2)a(h— ) = 0, which together
with (6.1) gives p is constant and hence « is constant. Thus (7.9) becomes AU =
—{ (% + ¢)/(2a)}U, a contradiction by virtue of Remark 5.1.

Therefore we verify that Q = @, that is, A£ = af on M. Thus, from (2.18)
we see that ReS = SRe. Hence from Theorem 1.2 ([9]) M is homogeneous real
hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies Vyy.eRe = 0. Since TrA is
constant and (2.16), it is easy to see that ¢Re = R¢¢ and TrR, is constant.
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Consequently we conclude that

Theorem 7.1. Let M be a real hypersurface of a complex space form My(c),c #
0,n > 3 which satisfies Vyv.eRe = 0 and TrR¢ is constant. Then M holds ¢Re =
R if and only if A& =0 or M is locally congruent to one of following:

(I) In cases that M, (c) = P,C with n(Ag) # 0,

(A1) a geodesic hypersphere of radius v, where 0 < r < 7/2 and r # 7/4;
(A2) a tube of radius r over a totally geodesic PyC for some k € {1,...,n—2},
where 0 <1 < 7/2 and r # /4.
(IT) In cases My(c) = H,C,

(Ao) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
n—1%;

(A2) a tube over a totally geodesic HyC for some k € {1,...,n — 2}.
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