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Abstract. Let M be a real hypersurface of a complex space form with almost contact

metric structure (ϕ, ξ, η, g). In this paper, we prove that if the structure Jacobi operator

Rξ = R(·, ξ)ξ is ϕ∇ξξ-parallel and Rξ commute with the structure tensor ϕ, then M is a

homogeneous real hypersurface of Type A provided that TrRξ is constant.

1. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic sectional
curvature 4c ̸= 0 is called a complex space form, which is denoted by Mn(c). So
naturally there exists a Kähler structure J and Kähler metric g̃ on Mn(c). As is
well known, complete and simply connected complex space forms are isometric to
a complex projective space Pn(C), or complex hyperbolic space Hn(C) as c > 0 or
c < 0. Now let us consider a real hypersurface M in Mn(c). Then we also denote
by g the induced Riemannian metric of Mand by N a local unit normal vector field
of M in Mn(c). Further, A denotes by the shape operator of M in Mn(c). Then,
an almost contact metric structure (ϕ, ξ, η, g) of M is naturally induced from the
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Kähler structure of Mn(c) as follows:

ϕX = (JX)T , ξ = −JN, η(X) = g(X, ξ), X ∈ TM,

where TM denotes the tangent bundle of M and ( )T the tangential component
of a vector. The Reeb vector ξ is said to be principal if Aξ = αξ, where α = η(Aξ).
A real hypersurface is said to a Hopf hypersurface if the Reeb vector ξ of M is
principal. Hopf hypersurfaces is realized as tubes over certain submanifolds in
PnC, by using its focal map (see Cecil and Ryan [2]). By making use of those
results and the mentioned work of Takagi ([17], [18]), Kimura [11] proved the local
classification theorem for Hopf hypersurfaces of PnC whose all principal curvatures
are constant. For the case HnC, Berndt [1] proved the classification theorem for
Hopf hypersurfaces whose all principal curvatures are constant. Among the several
types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular
type of tubes over totally geodesic PkC or HkC (0 ≤ k ≤ n−1) adding a horosphere
in HnC, which is called type A, has a lot of nice geometric properties. For example,
Okumura [13](resp. Montiel and Romero [12]) showed that a real hypersurface in
PnC (resp. HnC) is locally congruent to one of real hypersurfaces of type A if
and only if the Reeb flow ξ is isometric or equivalently the structure operator ϕ
commutes with the shape operator A.

The Reeb vector field ξ plays an important role in the theory of real hypersur-
faces in a complex space form Mn(c). Related to the Reeb vector field ξ the Jacobi
operator Rξ defined by Rξ = R(·, ξ)ξ for the curvature tensor R on a real hyper-
surface M in Mn(c) is said to be a structure Jacobi operator on M . The structure
Jacobi operator has a fundamental role in contact geometry. In [3], Cho and first
author started the study on real hypersurfaces in complex space form by using the
operator Rξ. In particular the structure Jacobi operator has been studied under
the various commutative conditions ([4], [5], [7], [16]). For example, Pérez et al.
[16] called that real hypersurfaces M has commuting structure Jacobi operator if
RξRX = RXRξ for any vector field X on M , and proved that there exist no real
hypersurfaces in Mn(c) with commuting structure Jacobi operator. On the other
hand Ortega et al. [14] have proved that there are no real hypersurfaces in Mn(c)
with parallel structure Jacobi operator Rξ, that is, ∇XRξ = 0 for any vector field
X on M . More generally, such a result has been extended by [15]. In this situa-
tion, if naturally leads us to be consider another condition weaker than parallelness.
In the preceding work, we investigate the weaker condition ξ-parallelness, that is,
∇ξRξ = 0 (cf. [4], [7], [8]). Moreover some works have studied several conditions
on the structure Jacobi operator Rξ ([3], [5], [7] and [8]). The following facts are
used in this paper without proof.

Theorem 1.1. (Ki, Kim and Lim [5]) Let M be a real hypersurface in a nonflat
complex space form Mn(c), c ̸= 0 which satisfies Rξ(Aϕ − ϕA) = 0. Then M is a
Hopf hypersurface in Mn(c). Further, M is locally congruent to one of the following
hypersurfaces:

(I) In cases that Mn(c) = PnC with η(Aξ) ̸= 0,



Jacobi operators with respect to the Reeb vector fields 543

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4;

(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−2},
where 0 < r < π/2 and r ̸= π/4.

(II) In cases Mn(c) = HnC,

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
Hn−1C;

(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.

Theorem 1.2. (Ki, Nagai and Takagi [9]) Let M be a real hypersurface in a nonflat
complex space form Mn(c), c ̸= 0 If M satisfies Rξϕ = ϕRξ and at the same time
RξS = SRξ. Then M is the same types as those in Theorem 1.1, where S denotes
the Ricci tensor of M .

In [6], the authors started the study on real hypersurfaces in a complex space
form with ϕ∇ξξ-parallel structure Jacobi operator Rξ, that is, ∇ϕ∇ξξRξ = 0 for
the vector ϕ∇ξξ orthogonal to ξ. In this paper we invetigate the structure Jacobi
operator is ϕ∇ξξ-parallel under the condition that the structure Jacobi operator
commute with the structure tensor ϕ. We prove that if the structure Jacobi oper-
ator Rξ is ϕ∇ξξ-parallel and Rξ commute with the structure tensor ϕ, then M is
homogeneous real hypersurfaces of Type A provided that TrRξ is constant.

All manifolds in this paper are assumed to be connected and of class C∞ and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c), c ̸= 0
with almost complex structure J , and N be a unit normal vector field on M .
The Riemannian connection ∇̃ in Mn(c) and ∇ in M are related by the following
formulas for any vector fields X and Y on M :

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

where g denotes the Riemannian metric of M induced from that of Mn(c) and A
denotes the shape operator of M in direction N . For any vector field X tangent to
M , we put

JX = ϕX + η(X)N, JN = −ξ.

We call ξ the structure vector field (or the Reeb vector field) and its flow also
denoted by the same latter ξ. The Reeb vector field ξ is said to be principal if
Aξ = αξ, where α = η(Aξ).

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field
ξ is principal. It is known that the aggregate (ϕ, ξ, η, g) is an almost contact metric
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structure on M , that is, we have

ϕ2X = −X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

η(ξ) = 1, ϕξ = 0, η(X) = g(X, ξ)

for any vector fields X and Y on M . From Kähler condition ∇̃J = 0, and taking
account of above equations, we see that

∇Xξ = ϕAX,(2.1)

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ(2.2)

for any vector fields X and Y tangent to M .
Since we consider that the ambient space is of constant holomorphic sectional

curvature 4c, equations of Gauss and Codazzi are respectively given by

(2.3)
R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

(2.4) (∇XA)Y − (∇YA)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}

for any vector fields X,Y and Z on M , where R denotes the Riemannian curvature
tensor of M .

In what follows, to write our formulas in convention forms, we denote by α =
η(Aξ), β = η(A2ξ) and h = TrA, and for a function f we denote by ∇f the gradient
vector field of f .

From the Gauss equation (2.3), the Ricci tensor S of M is given by

(2.5) SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X

for any vector field X on M .
Now, we put

(2.6) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. In the sequel, we put U = ∇ξξ, then
by (2.1) we see that

(2.7) U = µϕW

and hence U is orthogonal to W . So we have g(U,U) = µ2. Using (2.7), it is clear
that

(2.8) ϕU = −Aξ + αξ,

which shows that g(U,U) = β − α2. Thus it is seen that

(2.9) µ2 = β − α2.
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Making use of (2.1), (2.7) and (2.8), it is verified that

µg(∇XW, ξ) = g(AU,X),(2.10)

g(∇Xξ, U) = µg(AW,X)(2.11)

because W is orthogonal to ξ.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we

find

(2.12) (∇XA)ξ = −ϕ∇XU + g(AU +∇α,X)ξ −AϕAX + αϕAX,

which together with (2.4) implies that

(2.13) (∇ξA)ξ = 2AU +∇α.

Applying (2.12) by ϕ and making use of (2.11), we obtain

(2.14) ϕ(∇XA)ξ = ∇XU + µg(AW,X)ξ − ϕAϕAX − αAX + αg(Aξ,X)ξ,

which connected to (2.1), (2.9) and (2.13) gives

(2.15) ∇ξU = 3ϕAU + αAξ − βξ + ϕ∇α.

Using (2.3), the structure Jacobi operator Rξ is given by

(2.16) Rξ(X) = R(X, ξ)ξ = c{X − η(X)ξ}+ αAX − η(AX)Aξ

for any vector field X on M . Differentiating this covariantly along M , we find

(2.17)

g((∇XRξ)Y,Z) = g(∇X(RξY )−Rξ(∇XY ), Z)

= −c(η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z))

+(Xα)g(AY,Z) + αg((∇XA)Y,Z)

−η(AZ){g((∇XA)ξ, Y ) + g(AϕAX, Y )}
−η(AY ){g((∇XA)ξ, Z) + g(AϕAX,Z)}.

From (2.5) and (2.16), we have

(2.18)
(RξS − SRξ)(X) = −η(AX)A3ξ + η(A3X)Aξ − η(A2X)(hAξ − cξ)

+(hη(AX)− cη(X))A2ξ − ch(η(AX)ξ − η(X)Aξ).

Let Ω be the open subset of M defined by

Ω = {p ∈M ;Aξ − αξ ̸= 0}.

At each point of Ω, the Reeb vector field ξ is not principal. That is, ξ is not an
eigenvector of the shape operator A of M if Ω ̸= ∅.
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In what follows we assume that Ω is not an empty set in order to prove our main
theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns
the set Ω.

3. Real Hypersurfaces Satisfying Rξϕ = ϕRξ

Let M be a real hypersurface in Mn(c), c ̸= 0. We suppose that Rξϕ = ϕRξ.
Then by using (2.16) we have

(3.1) α(ϕAX −AϕX) = g(Aξ,X)U + g(U,X)Aξ.

Then, using (3.1), it is clear that α ̸= 0 on Ω. So a function λ given by β = αλ is
defined. Because of (2.9), we have

(3.2) µ2 = αλ− α2.

Replacing X by U in (3.1) and taking account of (2.8), we find

(3.3) ϕAU = λAξ −A2ξ,

which implies

(3.4) ϕA2ξ = AU + λU

because U is orthogonal to Aξ. From this and (2.6) we have

(3.5) µϕAW = AU + (λ− α)U,

which together with (2.7) yields

(3.6) g(AW,U) = 0.

Using (2.6) and (3.3), we can write (2.15) as

(3.7) ∇ξU = (3λ− 2α)Aξ − 3µAW − αλξ + ϕ∇α.

Since α ̸= 0 on Ω, (3.1) reformed as

(3.8) (ϕA−Aϕ)X = η(X)U + u(X)ξ + τ(u(X)W + w(X)U),

where a 1-form u is defined by u(X) = g(U,X) and w by w(X) = g(W,X), where
we put

(3.9) ατ = µ, λ− α = µτ.
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Differentiating (3.8) covariantly and taking the inner product with any vector field
Z, we find

(3.10)

g(ϕ(∇YA)X,Z) + g(ϕ(∇YA)Z,X)

= −η(AX)g(AY,Z)− g(AX,Y )η(AZ)

+g(A2X,Y )η(Z) + η(X)g(A2Y, Z)

+(η(X) + τw(X))g(∇Y U,Z)

+g(∇Y U,X)(η(Z) + τw(Z))

+u(X)g(∇Y ξ, Z) + g(∇Y ξ,X)u(Z)

+(Y τ)(u(X)w(Z) + u(Z)w(X))

+τ(u(X)g(∇YW,Z) + g(∇YW,X)u(Z))

because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect
to X and Y , and making use of the Codazzi equation (2.4), we find
(3.11)

c(η(X)g(Y, Z)− η(Y )g(X,Z)) + g((∇XA)ϕY,Z)− g((∇YA)ϕX,Z)

= −η(AX)g(AY,Z) + η(AY )g(AX,Z) + η(X)g(A2Y, Z)− η(Y )g(A2X,Z)

+(η(X) + τw(X))g(∇Y U,Z)− (η(Y ) + τw(Y ))g(∇XU,Z)
+(g(∇Y U,X)− g(∇XU, Y ))(η(Z) + τw(Z))

+u(X)g(∇Y ξ, Z)− u(Y )g(∇Xξ, Z) + (g(∇Y ξ,X)− g(∇Xξ, Y ))u(Z)

+(Y τ)(u(X)w(Z) + u(Z)w(X))− (Xτ)(u(Y )w(Z) + u(Z)w(Y ))

+τ{u(X)g(∇YW,Z)− u(Y )g(∇XW,Z)}
+τ{(g(∇YW,X)− g(∇XW,Y ))u(Z)}.

Interchanging Y and Z in (3.10), we obtain

g(ϕ(∇ZA)X,Y ) + g(ϕ(∇ZA)Y,X)

= −η(AX)g(AY,Z)− g(AX,Z)η(AY )

+ g(A2X,Z)η(Y ) + η(X)g(A2Y, Z) + (η(X) + τw(X))g(∇ZU, Y )

+ g(∇ZU,X)(η(Y ) + τw(Y )) + u(X)g(∇Zξ, Y ) + g(∇Zξ,X)u(Y )

+ (Zτ)(u(X)w(Y ) + u(Y )w(X)) + τ(u(X)g(∇ZW,Y ) + g(∇ZW,X)u(Y )),

or, using (2.4)

g(ϕ(∇XA)Z, Y ) + g(ϕ(∇YA)Z,X) + c(η(X)g(Z, Y ) + η(Y )g(Z,X)− 2η(Z)g(X,Y ))

= −η(AX)g(AY,Z)− g(AX,Z)η(AY ) + g(A2X,Z)η(Y ) + η(X)g(A2Y,Z)

+ (η(X) + τw(X))g(∇ZU, Y ) + g(∇ZU,X)(η(Y ) + τw(Y ))

+ u(X)g(∇Zξ, Y ) + g(∇Zξ,X)u(Y )

+ (Zτ)(u(X)w(Y ) + u(Y )w(X)) + τ(u(X)g(∇ZW,Y ) + g(∇ZW,X)u(Y )).
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Combining this to (3.11), we have

(3.12)

2g((∇YA)ϕX,Z) + 2c(η(Z)g(X,Y )− η(X)g(Y, Z))

+2η(X)g(A2Z, Y )− 2η(AX)g(AZ, Y )

+(g(∇ZU,X)− g(∇XU,Z))(η(Y ) + τw(Y ))

+(g(∇Y U,X)− g(∇XU, Y ))(η(Z) + τw(Z))

+(g(∇ZU, Y ) + g(∇Y U,Z))(η(X) + τw(X))

+(g(∇Zξ,X)− g(∇Xξ, Z))u(Y ) + (g(∇Y ξ,X)− g(∇Xξ, Y ))u(Z)

+(g(∇Zξ, Y ) + g(∇Y ξ, Z))u(X) + (Y τ)(u(X)w(Z) + u(Z)w(X))

+(Zτ)(u(X)w(Y ) + u(Y )w(X))− (Xτ)(u(Y )w(Z) + u(Z)w(Y ))

+τ{u(X)(g(∇ZW,Y ) + g(∇YW,Z))

+u(Z)(g(∇XW,Y )− g(∇YW,X))

+u(Y )(g(∇ZW,X)− g(∇XW,Z))} = 0.

If we put X = ξ in (3.12), then we have

(3.13)

g(∇Y U,Z) + g(∇ZU, Y ) + 2c(η(Z)η(Y )− g(Z, Y ))

+2g(A2Y,Z)− 2αg(AY,Z)− du(ξ, Z)(η(Y ) + τw(Y ))

−du(ξ, Y )(η(Z) + τw(Z))− 2u(Y )u(Z)

−(ξτ)(u(Y )w(Z) + u(Z)w(Y ))

−τ{u(Z)dw(ξ, Y ) + u(Y )dw(ξ, Z)} = 0,

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying Rξϕ = ϕRξ and ∇ϕ∇ξξRξ = 0

We will continue our discussions under the same hypothesis Rξϕ = ϕRξ as in
Section 3. Furthermore, suppose that ∇ϕ∇ξξRξ = 0 and then ∇WRξ = 0 since we
assume that µ ̸= 0. Replacing X by W in (2.17), we find

(4.1)

(Wα)g(AY,Z)− c(η(Z)g(ϕAW,Y ) + η(Y )g(ϕAW,Z))

+αg((∇WA)Y, Z)− η(AZ){g((∇WA)ξ, Y ) + g(AϕAW,Y )}
−η(AY ){g((∇WA)ξ, Z) + g(AϕAW,Z)} = 0

by virtue of ∇WRξ = 0. Putting Y = ξ in this and making use of (2.13) and (3.6),
we obtain

(4.2) αAϕAW + cϕAW = 0

because U and W are mutually orthogonal. From this and (2.16), it is seen that
RξϕAW = 0 by virtue of (3.6), and hence RξAW = 0 which together with (2.16)
implies that

(4.3) αA2W = −cAW + cµξ + µ(α+ g(AW,W ))Aξ,
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which tells us that

(4.4) αg(A2W,W ) = (µ2 − c)g(AW,W ) + αµ2.

Since α ̸= 0, β = αλ and (3.2), we see that

(4.5) g(A2W,W ) =
(
λ− α− c

α

)
g(AW,W ) + µ2.

Combining (3.5) to (4.2), we get

(4.6) αA2U = −(µ2 + c)AU − c(λ− α)U.

If we apply µW to (3.3) and make use of (2.6), then we find

(4.7) g(AU,U) = µ2(g(AW,W ) + α− λ).

Using (4.2), we see from (4.1)

α(∇WA)X =− (Wα)AX + η(AX)(∇WA)ξ + g((∇WA)ξ,X)Aξ

− c

α
µ(w(X)ϕAW + g(ϕAW,X)W )

for any vector field X, which together with (3.5) yields

α(∇WA)X =− (Wα)AX + η(AX)(∇WA)ξ + g((∇WA)ξ,X)Aξ

− c

α
{w(X)AU + u(AX)W + (λ− α)(w(X)U + u(X)W )}.

(4.8)

Now, if we put X =W in (2.12), and make use of (3.5) and (4.2), then we find

(4.9) (∇WA)ξ = −ϕ∇WU + (Wα)ξ +
1

µ

(
α+

c

α

)
{AU + (λ− α)U)}.

Also, if we take the inner product (2.12) with Aξ and take account of (2.6), (3.2)
and (3.4), then we obtain

α(Xα) + µ(Xµ) = g(αξ + µW, (∇XA)ξ)− g(A2U + λAU,X),

which together with (2.4), (2.13) and (4.6) yields

(4.10) µ(∇WA)ξ = −
(
α+

c

α

)
AU − c

α
(λ+ α)U + µ∇µ.

If we take the inner product (4.10) with ξ and make use of (2.13) and (3.6),
then we find

(4.11) Wα = ξµ.
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Using (4.10), we can write (4.8) as

(4.12)

α(∇WA)X + (Wα)AX

+
1

µ
η(AX)

{(
α+

c

α

)
AU +

c

α
(λ+ α)U − µ∇µ

}
+
1

µ

{(
α+

c

α

)
u(AX) +

c

α
(λ+ α)u(X)− µ(Xµ)

}
Aξ

+
c

α
{w(X)AU + u(AX)W + (λ− α)(w(X)U + u(X)W )} = 0.

Putting X =W in this, we get

(4.13) α(∇WA)W + (Wα)AW − (Wµ)Aξ +

(
α+

2c

α

)
AU +

2cλ

α
U − µ∇µ = 0.

Combining (4.9) to (4.10), we obtain

µϕ∇WU − µ(Wα)ξ + µ∇µ = 2
(
α+

c

α

)
AU +

(
µ2 +

2c

α
λ

)
U.

If we apply ϕ to this and make use of (2.8), (2.11) and (3.3), then we find

− µ∇WU − µ2g(AW,W )ξ + µϕ∇µ

= 2
(
α+

c

α

)
(λAξ −A2ξ)− µ

(
µ2 +

2c

α
λ

)
W,

which together with (2.6) yields

(4.14)
µ∇WU = µϕ∇µ+ (2c− µ2)Aξ + 2µ

(
α+

c

α

)
AW

−(αµ2 + 2cλ+ µ2g(AW,W ))ξ.

Now, we can take a orthonormal frame field {e0 = ξ, e1 =W, e2, . . . , en, en+1 =
ϕe1 = (1/µ)U, en+2 = ϕe2, . . . , e2n = ϕen} of M . Differentiating (2.6) covariantly
and making use of (2.1), we find

(4.15) (∇XA)ξ +AϕAX = (Xα)ξ + αϕAX + (Xµ)W + µ∇XW,

which implies

(4.16) µdivW = µ
2n∑
i=0

g(∇eiW, ei) = ξh− ξα−Wµ.

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we
have

(4.17)

−2cg(ϕX, Y ) + 2g(AϕAX, Y )

= (Xα)η(Y )− (Y α)η(X) + αg((ϕA+Aϕ)X,Y )

+(Xµ)w(Y )− (Y µ)w(X)

+µ(g(∇XW,Y )− g(∇YW,X)).
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Putting X = ξ in this and using (2.10) and (4.11), we have

(4.18) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (Wα)W.

Putting X = µW in (4.15) and taking account of (4.10), we get

−
(
α+

c

α

)
AU − c

α
(λ+ α)U + µ∇µ+ µAϕAW

= µ(Wα)ξ + µ(Wµ)W + µαϕAW + µ2∇WW,

or, using (3.5) and (4.2),

(4.19) µ2∇WW = −2
(
α+

c

α

)
AU−

(
µ2 +

2c

α
λ

)
U+µ∇µ−µ(Wα)ξ−µ(Wµ)W.

Now, putting X = U in (4.17) and making use of (2.6) and (3.3), we have

µ(g(∇UW,Y )− g(∇YW,U))

= (2cµ− Uµ)w(Y )− (Uα)η(Y )

+ µ2η(AY ) + 2λµw(AY )− 2µw(A2Y ),

which together with (4.3) gives

(4.20)
µdw(U, Y ) = (2cµ− Uµ)w(Y )− {Uα+ 2c(λ− α)}η(Y )

−{µ2 + 2(λ− α)g(AW,W )}η(AY ) + 2µ
(
λ+

c

α

)
w(AY ).

Because of (2.10) and (4.18), it is verified that

(4.21) µdw(ξ,X) = 2u(AX)− αu(X)− (ξα)η(X)− (Wα)w(X) +Xα.

Using (2.11) and (3.7), we obtain

(4.22) du(ξ,X) = (3λ− 2α)η(AX)− 2µw(AX)− αλη(X) + g(ϕ∇α,X).

Using above two equations, (3.13) is reduced to

(4.23)

g(∇XU, Y ) + g(∇Y U,X))

= 2c(g(X,Y )− η(X)η(Y ))− 2g(A2X,Y ) + 2αg(AX,Y )

+(ξτ)(u(X)w(Y ) + u(Y )w(X))

+
1

α
(2u(AX) +Xα− (ξα)η(X)− (Wα)w(X))u(Y )

+
1

α
(2u(AY ) + Y α− (ξα)η(Y )− (Wα)w(Y ))u(X)

+{(3λ− 2α)η(AX)− 2µw(AX)

−αλη(X) + g(ϕ∇α,X)}(η(Y ) + τw(Y ))

+{(3λ− 2α)η(AY )− 2µw(AY )

−αλη(Y ) + g(ϕ∇α, Y )}(η(X) + τw(X)),
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where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we
find

(4.24) divU = 2c(n− 1) + αh− TrA2 + λ(λ− α).

Replacing X by U in (4.23) and using (4.6) and (4.7), we find

g(∇UU, Y ) + g(∇Y U,U)

= (λ− α)(Y α) + 2
(
2λ− α+

c

α

)
u(AY )

+

{
Uα

α
+

2cλ

α
+ 2(λ− α)(g(AW,W ) + α− λ)

}
u(Y )

+ {µ(Wα)− (λ− α)ξα}η(Y ) + µ2(ξτ)w(Y ).

Since g(∇XU,U) = µ(Xµ), it follows that

(4.25)

du(U,X) = −2µ(Xµ) + (λ− α)(Xα) + 2
(
2λ− α+

c

α

)
u(AX)

+

{
Uα

α
+

2cλ

α
+ 2(λ− α)(g(AW,W ) + α− λ)

}
u(X)

+{µ(Wα)− (λ− α)ξα}η(X) + µ2(ξτ)w(X),

which implies that

(4.26) du(U,W ) = −2µ(Wµ) + (λ− α)Wα+ µ2(ξτ).

5. The Exterior Derivative of 1-form u

We will continue our discussions under the hypotheses as those stated in Section
4.

Putting Z = U in (3.12), we find

− 2µg((∇YA)X,W ) + 2cη(X)u(Y )− du(U,X)(η(Y ) + τw(Y ))

− du(U, Y )(η(X) + τw(X))− dη(U,X)u(Y )− dη(U, Y )u(X)

+ µ2(g(∇Xξ, Y ) + g(∇Y ξ,X)) + µ2((Xτ)w(Y ) + (Y τ)w(X))

+ τ{µ2(g(∇XW,Y ) + g(∇YW,X))− dw(U, Y )u(X)− dw(U,X)u(Y )}
− (Uτ)(u(X)w(Y ) + u(Y )w(X)) = 0.

Because of (2.1), (2.11) and (3.3), we see

dη(U,X) = (λ− α)η(AX)− 2µw(AX).
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Using this and (2.4), above equation reformed as

− 2µg((∇WA)Y,X)− 2c(η(Y )u(X) + η(X)u(Y ))− du(U,X)(η(Y ) + τw(Y ))

− du(U, Y )(η(X) + τw(X)) + µ2((Xτ)w(Y ) + (Y τ)w(X))

− (Uτ)(u(X)w(Y ) + u(Y )w(X))− {(λ− α)η(AX)− 2µw(AX)}u(Y )

− {(λ− α)η(AY )− 2µw(AY )}u(X) + µ2(g(∇Xξ, Y ) + g(∇Y ξ,X))

+ τ{µ2(g(∇XW,Y ) + g(∇YW,X))− dw(U, Y )u(X)− dw(U,X)u(Y )} = 0.

Substituting (4.20) into this, we obtain

2µg((∇WA)Y,X)

= −2c(η(Y )u(X) + η(X)u(Y ))− du(U,X)(η(Y ) + τw(Y ))

− du(U, Y )(η(X) + τw(X)) + µ2((Xτ)w(Y ) + (Y τ)w(X))

− (Uτ)(u(X)w(Y ) + u(Y )w(X))− {(λ− α)η(AX)− 2µw(AX)}u(Y )

− {(λ− α)η(AY )− 2µw(AY )}u(X) + µ2(g(∇Xξ, Y ) + g(∇Y ξ,X))

+ τµ2(g(∇XW,Y ) + g(∇YW,X))

− 1

α
u(X)

{
(2cµ− Uµ)w(Y )− (Uα+ 2c(λ− α))η(Y )

− {µ2 + 2(λ− α)g(AW,W )}η(AY ) + 2µ
(
λ+

c

α

)
w(AY )

}
− 1

α
u(Y )

{
(2cµ− Uµ)w(X)− {Uα+ 2c(λ− α)}η(X)

− {µ2 + 2(λ− α)g(AW,W )}η(AX) + 2µ
(
λ+

c

α

)
w(AX)

}
.

Combining this to (4.12), we have

(5.1)

−2µ(Wα)g(AY,X)

+2η(AY )
{
−
(
α+

c

α

)
u(AX)− c

α
(α+ λ)u(X) + µXµ

}
+2

{
−
(
α+

c

α

)
u(AY )− c

α
(α+ λ)u(Y ) + µ(Y µ)

}
η(AX)

−2cµ

α
{u(AX)w(Y ) + u(AY )w(X) + (λ− α)(w(X)u(Y ) + w(Y )u(X))}

= −2αc(η(Y )u(X) + η(X)u(Y ))− αdu(U,X)(η(Y ) + τw(Y ))
−αdu(U, Y )(η(X) + τw(X)) + αµ2((Xτ)w(Y ) + (Y τ)w(X))
−α(Uτ)(u(X)w(Y ) + u(Y )w(X))− µ2(η(AX)u(Y ) + η(AY )u(X))
+2αµ(w(AY )u(X) + w(AX)u(Y )) + αµ2(g(∇Xξ, Y ) + g(∇Y ξ,X))
+µ3(g(∇XW,Y ) + g(∇YW,X))

−u(X)
{
(2cµ− Uµ)w(Y )− (Uα+ 2c(λ− α))η(Y )

−(µ2 + 2(λ− α)g(AW,W ))η(AY ) + 2µ
(
λ+

c

α

)
w(AY )

}
−u(Y )

{
(2cµ− Uµ)w(X)− (Uα+ 2c(λ− α))η(X)

−(µ2 + 2(λ− α)g(AW,W ))η(AX) + 2µ
(
λ+

c

α

)
w(AX)

}
.
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If we put Y =W in (5.1) and take account of (2.1), (3.5) and (4.19), then we find

− 2µ(Wα)w(AX) + µ2(Xµ)

+ 2µ(Wµ)η(AX)− 2cµ

α
{u(AX) + (λ− α)u(X)}

= −µdu(U,X)− αdu(U,W )(η(X) + τw(X))

+ αµ2((Xτ) + (Wτ)w(X))

− µ2{(Wα)η(X) + (Wµ)w(X)}

+

(
Uµ− α(Uτ)− 2c

α
µg(AW,W )

)
u(X),

or, using (4.25) and (4.26)

2µ(Wα)AW − 2cµU + {µ(λ− α)ξα− 3µ2Wα− αµ2(ξτ)}ξ
− {µ2(Wµ) + τµ2(Wα) + 2µ3(ξτ)}W + µ2∇µ− µ(λ− α)∇α

− 2µ(2λ− α)AU − µ

{
Uα

α
+ 2(λ− α)g(AW,W )− 2(λ− α)2

}
U

+ αµ2((Wτ)W +∇τ) +
{
Uµ− α(Uτ)− 2cµ

α
g(AW,W )

}
U = 0.

By the way, since ατ = µ, we find

(5.2) αµ∇τ = µ∇µ− (λ− α)∇α.

Using this, above equation is reduced to

(5.3)

µ∇µ− (λ− α)∇α

= (2λ− α)AU +
{(
λ− α+

c

α

)
g(AW,W )− (λ− α)2 + c

}
U

−(Wα)AW + {2µ(Wα)− (λ− α)ξα}ξ + (λ− α)(2Wα− τ(ξα))W.

If we take the inner product (5.3) with W , then we get

(5.4) µ(Wµ) = {3(λ− α)− g(AW,W )}Wα− τ(λ− α)ξα.

Also, taking the inner product (5.3) with U and making use of (4.7), we obtain

(5.5)
Uµ

µ
− Uα

α
=

(
3λ− 2α+

c

α

)
g(AW,W ) + (λ− α)(2α− 3λ) + c.

On the other hand, replacing Y by W in (4.23) and using (4.3), we find

g(∇XU,W ) + g(∇WU,X)− µ

α
g(ϕ∇α,X)− (ξτ)u(X)

− {µ(3λ− 2α)− 2µg(AW,W ) + g(ϕ∇α,W )}(η(X) + τw(X))

+ 2
(
λ− 2α− c

α

)
g(AW,X)− 2cw(X)

+
µ

α
(4α− 3λ+ 2g(AW,W ))η(AX) + µ

(
λ+

2c

α

)
η(X) = 0,
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or using (4.14),

(5.6)

g(∇XU,W ) + g(ϕ∇µ,X)− λ− α

µ
g(ϕ∇α,X)

−(ξτ)u(X) + 2(λ− α)w(AX)

+

{
Uα

α
+ (λ− α)(5α− 6λ+ 4g(AW,W ))

}
w(X)

+

{
Uα

µ
+ µ(4α− 5λ+ 3g(AW,W ))

}
η(X) = 0.

By the way, applying (5.3) by ϕ and making use of (2.6), (3.3) and (3.5), we
have

µϕ∇µ− (λ− α)ϕ∇α

= − 1

µ
(Wα)AU + µ(ξτ)U + µ2(2λ− α)ξ − µ(2λ− α)AW

− µ
{(
λ− α+

c

α

)
g(AW,W )− (λ− α)(3λ− 2α) + c

}
W.

Substituting this into (5.6), we find

(5.7)

g(∇XU,W )

=
Wα

µ2
u(AX) + αw(AX)

+

{
3(λ− α)2 +

c

α
g(AW,W ) + c− Uα

α
− 3(λ− α)g(AW,W )

}
w(X)

+

{
3µ(λ− α− g(AW,W ))− Uα

µ

}
η(X).

On the other hand, (4.12) turns out, using (2.4), to be

α(∇XA)W

=
cα

µ
(η(X)U + 2u(X)ξ)− (Wα)AX

+
1

µ
η(AX)

{
µ∇µ−

(
α+

c

α

)
AU − c

α
(λ+ α)U

}
+

1

µ

{
µ(Xµ)−

(
α+

c

α

)
u(AX)− c

α
(λ+ α)u(X)

}
Aξ

− c

α
{w(X)AU + u(AX)W + (λ− α)(u(X)W + w(X)U)} .
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If we apply by ϕ to this and make use of (3.3), then we find

(5.8)

−αϕ(∇XA)W = (Wα)ϕAX + cαη(X)W − (Xµ)U

+
1

µ
η(AX)

{(
α+

c

α

)
{(λ− α)Aξ − µAW} − c

α
µ(λ+ α)W − µϕ∇µ

}
+
1

µ

{(
α+

c

α

)
u(AX) +

2cλ

α
u(X)

}
U +

c

α
w(X)(µ2ξ − µAW ).

Now, if we put Z =W in (3.12), then we find

2g(ϕ(∇YA)W,X)

= 2{(w(A2Y )− cw(Y ))η(X)− w(AY )η(AX)}
+ du(W,X)(η(Y ) + τw(Y )) + τdu(Y,X) + (Wτ)(w(Y )u(X) + w(X)u(Y ))

+ (g(∇WU, Y ) + g(∇Y U,W ))(η(X) + τw(X))

+
2

µ
{u(AX) + (λ− α)u(X)}u(Y )

+ (Y τ)u(X)− (Xτ)u(Y ) + τ(u(Y )g(∇WW,X)

+ u(X)g(∇WW,Y )).

Using (2.1), (2.10), (3.5) and (3.8), we can write the above equation as

2αg(ϕ(∇YA)W,X)

= µdu(Y,X)− 2cη(X)w(AY ) + 2µ(c+ α2 + αg(AW,W ))η(X)η(Y )

+ 2(αµ2 + µ2g(AW,W )− cα)η(X)w(Y )

− 2αη(AX)w(AY ) + α(Wτ)(w(X)u(Y ) + w(Y )u(X))

+ αg(∇WU,X)(η(Y ) + τw(Y ))

+ αg(∇WU, Y )(η(X) + τw(X))− g(∇XU,W )η(AY )

+ g(∇Y U,W )η(AX) +
2α

µ
{u(AX) + (λ− α)u(X)}u(Y )

+ α((Y τ)u(X)− (Xτ)u(Y )) + µ(u(X)g(∇WW,Y ) + u(Y )g(∇WW,X)),

or using (5.8),

µdu(X,Y )

= (Wα)g((ϕA+Aϕ)X,Y ) +
2c

α
µ(w(X)w(AY )− w(Y )w(AX))

+ η(AX)g(ϕ∇µ, Y )− η(AY )g(ϕ∇µ,X)

+
2c

µα
(u(X)u(AY )− u(Y )u(AX))− (Xµ)u(Y ) + (Y µ)u(X)

+ α((Xτ)u(Y )− (Y τ)u(X))

+ g(∇Y U,W )η(AX)− g(∇XU,W )η(AY )

+ {2cα− 2cλ− µ2(α+ g(AW,W ))}(η(X)w(Y )− η(Y )w(X)),
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which together with (5.2) and (5.7) yields

(5.9)

µdu(X,Y )

= (Wα)g((ϕA+Aϕ)X,Y ) +
2cµ

α
(w(X)w(AY )− w(Y )w(AX))

+
Wα

µ2
(η(AX)u(AY )− η(AY )u(AX))

+η(AX)g(ϕ∇µ, Y )− η(AY )g(ϕ∇µ,X)

+α(η(AX)w(AY )− η(AY )w(AX))

+
2c

µα
(u(X)u(AY )− u(Y )u(AX)) +

µ

α
((Xα)u(Y )− (Y α)u(X))

+{(µ2 + c)g(AW,W ) + αµ2 − cα+ 2cλ}(η(X)w(Y )− η(Y )w(X)).

Putting X = ϕei and Y = ei in this and summing up for i = 1, 2, · · · , n, we obtain

µ
2n∑
i=0

du(ϕei, ei) = (h− α− g(AW,W ))Wα− µ(Wµ),

where we have used (2.6)–(2.8), (3.5) and (4.7). Taking the trace of (2.12), we
obtain

2n∑
i=0

g(ϕ∇eiU, ei) = ξα− ξh.

Thus, it follows that

(5.10) µ(ξh− ξα) = µ(Wµ) + (g(AW,W ) + α− h)Wα,

which together with (4.16) gives

(5.11) µ2(divW ) = (g(AW,W ) + α− h)Wα.

We notice here that

Remark 5.1. If AU = σU for some function σ on Ω, then AW ∈ span{ξ,W} on
Ω, where span{ξ,W} is a linear subspace spanned by ξ and W .

In fact, because of the hypothesis AU = σU , (3.5) reformed as

µϕAW = (σ + λ− α)U,

which implies that AW = µξ + (σ + λ− α)W ∈ span{ξ,W}.

Now, we prepare the following lemma for later use.

Lemma 5.2. Let M be a real hypersurface of Mn(c), c ̸= 0 which satisfies
Rξϕ = ϕRξ and ∇ϕ∇ξξRξ = 0. If AW ∈ span{ξ,W}, then Ω = ∅.
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Proof. Since (3.5) and AW = µξ + g(AW,W )W , we have

(5.12) AU = (g(AW,W ) + α− λ)U.

From (4.2) we also have

g(AW,W )(αAU + cU) = 0.

Now, suppose that g(AW,W ) ̸= 0 on Ω. Then we have αAU + cU = 0 on this
subset, which together with (5.12) gives

(5.13) µ2 = αg(AW,W ) + c.

From this and (2.16) we have RξW = 0 and consequently RξAξ = 0 on the subset
because of (2.6) and (2.16). If we take (3.1) by Rξ and using RξU = 0 and RξAξ = 0,
we obtain Rξ(Aϕ− ϕA) = 0, that is, Rξ(Lξg) = 0 on the subset, where Lξ denotes
the operator of the Lie derivative with respect to ξ. Owing to Theorem 5.1 of [5],
it is verified that Aξ = αξ, a contradiction. Therefore we have the following

(5.14) g(AW,W ) = 0

on Ω. So we have

(5.15) AW = µξ.

From (5.12) and (5.14), we get

(5.16) AU = (α− λ)U.

Differentiating (5.15) covariantly, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ.

Taking the inner product with W and making use of (2.11) and (5.16), we have

g((∇XA)W,W ) = 2(λ− α)u(X)

Using (2.4) it reformed as

(5.17) (∇WA)W = 2(λ− α)U.

On the other hand, (4.13) is reduced, using (5.16) and (5.17), to

(5.18) (µ2 + 2c)U = −µ(Wα)ξ + (Wµ)Aξ + µ∇µ.

Taking the inner product with W , we have

(5.19) Wµ = 0.
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Hence, it follows from (5.18) that

(5.20) µ∇µ = µ(Wα)ξ + (µ2 + 2c)U,

which shows that for any vector fields X

µ(Xµ) = µ(Wα)η(X) + (µ2 + 2c)u(X).

Differentiating this covariantly and using (2.1), we have

(Y µ)(Xµ) + µ(Y (Xµ))

= Y (µ(Wα))η(X) + µ(Wα)g(ϕAY,X)

+ (2µ(Wα)η(Y ) + 2(µ2 + 2c)u(Y ))u(X) + (µ2 + 2c)g(∇Y U,X)

+ {µ(Wα)η(∇YX) + (µ2 + 2c)u(∇Y U)}.

Taking the skew-symmtric part of this, we find

(5.21)

Y (µ(Wα))η(X)−X(µ(Wα))η(Y )

+(µ(Wα))g((ϕA+Aϕ)Y,X)

+2µ(Wα)(η(Y )u(X)− η(X)u(Y ))

+(µ2 + 2c)(g(∇Y U,X)− g(∇XU, Y )) = 0.

Replacing Y by ξ in this, and using (2.10) and (5.17), we have

X(µ(Wα))− 2µ(Wα)u(X) =ξ(µ(Wα))η(X) + (µ(Wα))u(X)

+ (µ2 + c)(g(∇ξU,X)− µ2η(X)).

Substituting this into (5.21), we obtain

µ(Wα)(u(Y )η(X)− u(X)η(Y ))

+ (µ2 + 2c)(g(∇ξU, Y )η(X)− g(∇ξU,X)η(Y ))

+ µ(Wα)g((ϕA+Aϕ)Y,X)

+ (µ2 + 2c)(g(∇Y U,X)− g(∇XU, Y )) = 0.

Putting Y = U in this, and using (2.8), (3.3), (4.11), (5.15) and (5.16), we obtain

(5.22)
(µ2 + 2c)(g(∇UU,X)− µ(Xµ))

+µ(µ2 + 2c)(Wα)η(X) + µ2(λ− α)(Wα)w(X) = 0.

On the other hand, putting Y = U in (5.9) and making use of (5.14), (5.15)
and (5.19), we have

g(∇UU,X)− µ(Xµ) = 2(λ− α)(Wα)w(X) +
Uα

α
u(X)− (λ− α)Xα.
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Combining this to (5.22), we have

(µ2 + 2c)

{
2(λ− α)(Wα)w(X) +

Uα

α
u(X)− (λ− α)Xα

}
+ µ(µ2 + 2c)(Wα)η(X)− µ2(λ− α)(Wα)w(X) = 0.

If we put X =W in this, then we have

(µ2 + 2c)(λ− α)Wα = (µ2 + 4c)(λ− α)Wα,

which, together with λ ̸= α, shows that

(5.23) Wα = 0.

Thus, (5.20) becomes

(5.24) µ∇µ = (µ2 + 2c)U,

which implies

(5.25) ϕ∇µ = −(µ2 + 2c)W.

Using (5.23), we can write (5.21) as

(µ2 + 2c)(g(∇Y U,X)− g(∇XU, Y )) = 0.

Now, suppose that µ2 + 2c ̸= 0. Then we have g(∇Y U,X) − g(∇XU, Y ) = 0.
Using (5.14)–(5.16), (5.20), (5.23) and (5.25), we can write (5.9) as

(µ2 + c)(w(X)η(Y )− w(Y )η(X)) = 0,

which implies µ2 + c = 0. So µ is constant. Thus, (5.23) becomes µ2 + 2c = 0, a
contradiction. Therefore, we see that µ2 + 2c = 0.

Accordingly we see that µ is constant, which together with (5.4) yields ξα = 0.
Hence (5.3) is reduced to

(5.26) µ2∇α = {µ2(3λ− 2α)− cα}U.

Taking the inner product this to X and differentiating covariantly, we find

µ2(Y (Xα)) ={µ2(3Y λ− 2Y α)− cα}u(X)

+ {µ2(3λ− 2α)− cα}(g(∇Y U,X) + g(U,∇YX)).

The skew-symmetric part of this is given by

3µ2((Y λ)u(X)− (Xλ)u(Y )) + (2µ2 + c)((Xα)u(Y )− (Y α)u(X))

+ {µ2(3λ− 2α)− cα}(g(∇Y U,X)− g(∇XU, Y )) = 0,
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which implies that ∇λ = χU for some function χ, where we have used (4.24) and
(5.26). Thus it follows that

{µ2(3λ− α)− cα}(g(∇Y U,X)− g(∇XU, Y )) = 0.

If g(∇Y U,X) − g(∇XU, Y ) = 0, then similarly as above we have a contradiction.
Thus we have µ2(3λ−2α)−cα = 0, which together with µ2+2c = 0 gives 2λ−α = 0.
i.e. 2µ2 + α2 = 0, a contradiction. Therefore Lemma 5.2 is proved. 2

Lemma 5.3.

α2ϕ(∇λ−∇h) = −4µ(µ2 + c)(AW − µξ) +
α

µ
(h− λ)(Wα)U + fW,

for some function f on Ω.

Proof. Putting X = Y = ei in (3.12), summing up for i = 0, 1, · · · , 2n and using
(2.1) and (2.4), we find

Tr(∇ϕZA)− 2c(n− 1)η(Z) + (TrA2)η(Z)− hη(AZ)

+ g(∇ξU,Z)− g(∇ZU, ξ) + τ(g(∇WU,Z) + g(∇UW,Z))

+ (divU)(η(Z) + τw(Z)) + g((ϕA+Aϕ)U,Z)

+ (Wτ)u(Z) + (Uτ)w(Z) + τ(divW )u(Z) = 0,

or using (2.10), (3.3), (3.7) and (4.24)

(5.27)

ϕ∇α− ϕ∇h+
µ

α
(∇WU +∇UW )− 4µAW + (Wτ + τ(divW ))U

+(Uτ + τ(divU) + µ(4λ− 3α− h))W

+(λ− α)(λ+ 3α)ξ = 0.

On the other hand, combining (4.20) to (5.8) and making use of (5.7), we find

∇UW =
1

µ
{µϕ∇µ− (λ− α)ϕ∇α}

− (ξτ)U + 2
(
2λ− α+

c

α

)
AW

+
{
(λ− α)(2α− 3λ) + c−

(
λ+

c

α

)
g(AW,W )

}
W

+ µ

{
g(AW,W ) + 3α− 5λ− 2c

α

}
ξ.
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Substituting this and (4.14) into (5.27), we find

(5.28)

αϕ(∇α−∇h) + 2µϕ∇µ− (λ− α)ϕ∇α

= 4µ
(
α− λ− c

α

)
AW + (µ(ξτ)− α(Wτ)− µ(divW ))U

−4(λ− α)(µ2 + c)ξ − (α(Uτ) + µ(divW ))W

−µ
{
3c+ (λ− α)(α− 3λ)

−
(
λ+

c

α

)
g(AW,W ) + 4αλ− 3α2 − hα

}
W.

From (4.11), (4.16) and (5.2) we have

αµ (µ(ξτ)− α(Wτ)− µ(divW ))

= 2µ2(Wα)− µ(λ− 2α)ξα− αµ(ξh).

By the way, using (5.4) and (5.10) we have

µ(λ− 2α)ξα+ αµ(ξh) = α(3λ− 2α− h)Wα.

Thus, we have

(5.29) αµ (µ(ξτ)− α(Wτ)− µ(divW )) = α(h− λ)Wα.

Differentiating (3.2) covariantly, we find

(5.30) 2µ∇µ = (λ− 2α)∇α+ α∇λ.

Using this and (5.29), the equation (5.28) reformed as

α2ϕ(∇λ−∇h) = −4µ(µ2 + c)(AW − µξ) +
α

µ
(h− λ)(Wα)U + fW,

where we have put

f =αµ

{
hα+ 4α2 − 8αλ+ 3λ2 − 3c

+
(
λ+

c

α

)
g(AW,W )− divU − α

µ
(Uτ)

}
.

This completes the proof of Lemma 5.3. 2

6. Lemmas

We will continue our discussions under the same hypotheses as those in Section
4. Further we assume that TrRξ is constant, that is, g(Sξ, ξ) is constant. Then,
from (2.5) we see that β − hα is constant, i.e.

(6.1) α(h− λ) = C,
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where C is some constant. Differentiating this covariantly, we have

(6.2) (λ− h)∇α+ α(∇λ−∇h) = 0.

So we have αϕ(∇λ−∇h) = (h− λ)ϕ∇α. Thus, from Lemma 5.3 we find

α(h− λ)

µ
ϕ(∇α− (Wα)W ) = −4(µ2 + c)(AW − µξ) +

α

µ
fW,

which tells us that

α(h− λ)

µ2
(Uα) = 4(µ2 + c)g(AW,W )− α

µ
f.

Combining the last two equations, it follows that

(6.3)

α(h− λ)

µ
ϕ

(
∇α− (Wα)W − Uα

µ2
U

)
= −4(µ2 + c)(AW − µξ − g(AW,W )W ).

Applying this by ϕ and using (3.5), we find

(6.4)
α(h− λ)

(
∇α− (ξα)ξ − (Wα)W − Uα

µ2
U

)
= 4(µ2 + c){AU + (λ− α)U − g(AW,W )U}.

Taking the inner product with AW to this, and using (4.6), (5.4) and α ̸= 0, we see

(6.5) (h− λ)(g(AW,∇α)− µ(ξα)− g(AW,W )(Wα)) = 0.

First of all, we prove the following:

Lemma 6.1. h− λ ̸= 0 on Ω.

Proof. If not, then we have from (6.4)

(µ2 + c){AU − (g(AW,W ) + α− λ)U} = 0

on this subset. Because of Remark 5.1 and Lemma 5.2, it is verified that µ2+ c = 0
on the set and hence µ is constant. Accordingly we see that Wα = 0 because of
(4.11) and hence ξα = 0 and ξτ = 0 by virtue of (5.2) and (5.4). Thus, (5.3)
reformed as

(λ− α)∇α+ (2λ− α)AU + {c− (λ− α)2}U = 0,

which together with µ2 + c = 0 implies that

(6.6) Xα = λu(X) + εg(AU,X)
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for any vector field X, where we have put cε = α2 − 2c. Differentiating (6.6)
covariantly with respect to a vector field Y and taking skew-symmetric part, we get

(Y λ)u(X)− (Xλ)u(Y ) + λ(g(∇Y U,X)− g(∇XU, Y ))

+ (Y ε)u(AX)− (Xε)u(AY )

+ ε{cµ(η(Y )w(X)− η(X)w(Y )) + g(A∇Y U,X)− g(A∇XU, Y )} = 0.

where we have used the Codazzi equation (2.4). Since ξα = 0 and (6.1), by replacing
X by ξ in this, we get

− λ(g(∇ξU, Y ) + g(∇Y ξ, U))

+ ε(g(∇Y U,αξ + µW )− cµw(Y )− g(∇ξU,AY )) = 0,

where we have used (2.6), which together with (2.10) and (5.9) implies that

(6.7) εA∇ξU + λ∇ξU + µλAW ∈ span{ξ,W}.

On the other hand, we can write (3.7) as

∇ξU = −µ(ε+ 3)AW + (λ− α)(ε+ 2)Aξ,

where we have used (3.3) and (6.6), which together with (2.6), (4.3) and the fact
that µ2 + c = 0 yields

A∇ξU =− µ(λ− α)AW + {c− (λ− α)(ε+ 3)g(AW,W )}Aξ
− c(λ− α)(ε+ 3)ξ.

Combining the last three equations, it is seen that

{(2λ− α)ε+ 2λ}AW ∈ span{ξ,W},

which shows that (2λ − α)ε + 2λ = 0 by Lemma 5.2. So we have (2λ − α)(α2 −
2c) + 2cλ = 0, a contradiction because of µ2 + c = 0. This completes the proof. 2

If we combine (6.2) to (5.30), then we have

(6.8) 2µ∇µ = (h− 2α)∇α+ α∇h.

If we apply this by ξ, then we find

(6.9) 2µ(ξµ) = (h− 2α)ξα+ α(ξh).

From (4.11), (5.6) and (5.12) we get (h− λ)(µ(ξα)− α(Wα)) = 0 and hence

(6.10) µ(ξα) = α(Wα)

by virtue of Lemma 6.1, which together with (6.9) yields

(6.11) µ(ξh) = (2λ− h)Wα.
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From (5.2) and (6.10) we have ξτ = 0. Thus, using (6.8) and (6.10) we verify from
(5.3)

(6.12)

1

2
(h∇α+ α∇h)− λ∇α+ (Wα)AW

= (2λ− α)AU +
{(
λ− α+

c

α

)
g(AW,W )− (λ− α)2 + c

}
U

+(Wα){µξ + (λ− α)W}.

Because of Lemma 6.1, (6.5) implies that

(6.13) g(AW,∇α) = (α+ g(AW,W ))Wα,

with the aid of (6.10). Applying (5.3) by AW and making use of (4.3), (6.10), (6.13)
and ξτ = 0, we find

µg(AW,∇µ)− (λ− α)(α+ g(AW,W ))Wα+ g(A2W,W )Wα

= {µ2 + (λ− α)g(AW,W )}Wα,

which together with (4.5) gives

(6.14) µαg(AW,∇µ) = {(µ2 + c)g(AW,W ) + αµ2}Wα.

In the next place, we will prove that

Lemma 6.2. ξα =Wα =Wµ = ξh = ξλ =Wλ = 0 and ξ(g(AW,W )) = 0 on Ω.

Proof. Differentiating (4.4) covariantly, we get

g(A2W,W )(Xα) + α(X(g(A2W,W )))

= 2µg(AW,W )(Xµ) + (µ2 − c)(X(g(AW,W ))) + µ2(Xα) + 2µα(Xµ).

(6.15)

Replacing X by ξ in this, and using (4.11) and (6.10), we find

α(ξ(g(A2W,W ))) =
α

µ
(µ2 − g(A2W,W ))Wα+ 2µ(α+ g(AW,W ))Wα

+ (µ2 − c)(ξ(g(AW,W ))).

(6.16)

By the way, using (4.10), (4.18), (6.10) and (6.13), we verify that ξ(g(AW,W ))
=Wµ, which together with (5.4) and (6.10) yields

ξ(g(AW,W )) =
1

µ
{2(λ− α)− g(AW,W )}Wα.

Substituting this and (4.5) into (6.14), we find

(6.17)
α

2
ξ(g(A2W,W )) =

{
c

µ
g(AW,W ) + µα+

µ

α
(µ2 − c)

}
Wα.
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On the other hand, we have

1

2
(X(g(A2W,W ))) = g((∇XA)W,AW ) + g(A2W,∇XW ),

which implies

1

2
α(X(g(A2W,W ))) =αg((∇WA)X,AW ) + 2cαu(X)− cg(AW,∇XW )

+ cu(AX) + α(α+ g(AW,W ))u(AX),

(6.18)

where we have used (2.6), (2.11) and (4.3).
By the way, putting X = AW in (4.12) and making use of (2.6) and (6.14), we

obtain

α(∇WA)AW

= −(Wα)A2W

+ (α+ g(AW,W ))
{
−
(
α+

c

α

)
AU − c

α
(λ+ α)U + µ∇µ

}
+

1

µα

{
(µ2 + c)g(AW,W ) + αµ2

}
(Wα)Aξ

− c

α
g(AW,W ){AU + (λ− α)U},

which implies

αg((∇WA)AW, ξ) =
1

µ
{αµ2 + (µ2 + c)g(AW,W )}

because of (2.6) and (4.11). If we replace X by ξ in (6.16) and make use of (4.11),
(4.18) and (6.17), then we obtain

(µ2 − c− αg(AW,W ))(Wα) = 0

because of λ− α ̸= 0.
Now, suppose that Wα ̸= 0 on Ω. Then since λ ̸= α, we have αg(AW,W ) =

µ2 − c, which together with (3.2) and (4.7) gives αg(AU,U) = −cµ2. From this
and (4.6) we verify that α2g(A2U,U) = c2µ2. Using the last two equations it is
seen that ||αAU + cU ||2 = 0 and hence αAU + cU = 0. Thus, (3.5) is reduced
to µϕAW = (λ − α − c/α)U , which shows that AW = µξ + g(AW,W )W on this
subset. According to Lemma 5.2, we have Ω = ∅, and hence Wα = 0 on Ω. Thus,
it is clear that Wµ = 0, ξα = 0, ξh = 0 and ξλ = 0, where we have used (4.11),
(5.6), (6.2), (6.9), (6.10) and (6.11). Since (3.2), Wα = 0 and Wµ = 0, we have
Wλ = 0. Hence Lemma 6.2 is proved. 2

Because of Lemma 6.2, we can write (6.4) as

α(h− λ)

(
∇α− Uα

µ2
U

)
= 4(µ2 + c){AU − (λ− α− g(AW,W ))U},
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which tells us that

(6.19)
1

4
α(h− λ)∇α = (µ2 + c)AU + θU,

where the function θ is defined by

µ2θ =
α(h− λ)

4
(Uα)− (µ2 + c)g(AU,U).

We also have from (5.4)

(6.20) µ∇µ− (λ− α)∇α = (2λ− α)AU + ρU,

where we have put

(6.21) ρ =
(
λ− α+

c

α

)
g(AW,W )− (λ− α)2 + c.

Remark 6.3. µ2 + c ̸= 0 on Ω.

If not, then we have µ2+c = 0 and hence µ is constant on this subset. So (6.19)
and (6.20) are reduced respectively to

µ2∇α = (Uα)U,

(λ− α)∇α+ (2λ− α)AU + {c− (λ− α)2}U = 0

because of Lemma 5.2. Combining these two equations, we obtain

(2λ− α)AU =

{
(λ− α)2 − c− Uα

α

}
U.

Suppose that 2λ − α = 0 on this subset. Then, the equation µ2 + c = 0 becomes
α2 − 2c = 0, a contradiction. Thus we have 2λ− α ̸= 0. Owing to Remark 5.1 and
Lemma 5.2, above equation produces a contradiction. Hence µ2 + c ̸= 0 on Ω is
proved.

Lemma 6.4. (2λ− α)θ = (µ2 + c)ρ on Ω.

Proof. From (6.17) and (6.18) we have

1

4
α(h− λ)(2λ− α)∇α− (µ2 + c)

{
1

2
∇µ2 − (λ− α)∇α

}
= {(2λ− α)θ − (µ2 + c)ρ}U.

Using the same method as that used to derive (6.7) from (6.6), we can deduce from
this that

(2λ− α)(ξθ)U + {(2λ− α)θ − (µ2 + c)ρ}(∇ξU + µAW ) = 0,
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where, we have used (2.10), (6.1) and Lemma 6.2. If we take the inner product with
U to this and make use of ξµ = 0, then we get (2λ− α)ξθ = 0 and hence

{(2λ− α)θ − (µ2 + c)ρ}(∇ξU + µAW ) = 0.

If (2λ− α)θ − (µ2 + c)ρ ̸= 0 on Ω, then we have

∇ξU + µAW = 0.

We discuss our arguments on such a place. Using (3.7), the last equation can be
written as

ϕ∇α = 2µAW + (2α− 3λ)Aξ + αλξ.

Applying this by ϕ and taking account of (3.5) and Lemma 6.2, we obtain

(6.22) ∇α = −2AU + λU.

Combining this to (6.19), we obtain{
µ2 + c+

1

2
α(h− λ)

}
AU =

{
1

4
αλ(h− λ)− θ

}
U.

Because of Remark 5.1 and Lemma 5.2, we conclude that µ2+c+(1/2)α(h−λ) = 0.
Hence it follows from (6.1) that µ is constant. Thus, (6.20) reformed as

(λ− α)∇α = (α− 2λ)AU − ρU,

which together with (6.22) implies that αAU = {λ(α − λ) − ρ}U . Therefore we
verify that (2λ−α)θ− ρ(µ2+ c) = 0 by virtue of Remark 5.1 and Lemma 5.2. This
completes the proof. 2

Lemma 6.5 Let span{ξ,W} be the linear subspace spanned by ξ and W . Then
there exists P ∈ span{ξ,W} such that

g(AW,∇XU)

=
c

α
w(A2X)−

{
µ2 +

(
λ− α+

c

α

)
g(AW,W )

}
w(AX) + g(P,X).

Proof. Putting Y = AW in (5.9) and using (3.6), (4.3), (6.13) and Lemma 6.2, we
find

µdu(X,AW )

=
2c

α
µ{g(A2W,W )w(X)− g(AW,W )w(AX)}

+ η(AX)g(ϕ∇µ,AW )− µ(α+ g(AW,W ))g(ϕ∇µ,X)

+ α{g(A2W,W )η(AX)− µ(α+ g(AW,W ))w(AX)}
+ {(µ2 + c)g(AW,W ) + αµ2 − cα+ 2cλ}(g(AW,W )η(X)− µw(X)),
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which enables us to obtain

g(AW,∇XU)− g(∇AWU,X)

= −α
(
α+ g(AW,W ) +

2c

α2
g(AW,W )

)
w(AX)

− (α+ g(AW,W ))g(ϕ∇µ,X) + g(P1, X),

for some P1 ∈ span{ξ,W}. If we replace X by AW in (4.23) and make use of (3.5),
(4.3), (6.14) and Lemma 6.2, then we get

g(∇XU,AW ) + g(∇AWU,X)

= 2cw(AX) + 2αw(A2X)− 2w(A3X)

+
(
µ+

µ

α
g(AW,W )

)
{(3λ− 2α)η(AX)− 2µw(AX)

−αλη(X) + g(ϕ∇α,X)}

+

{
µ(3λ− 2α)(α+ g(AW,W ))− 2µg(AW,W )− αλµ

− 1

µ
g(AU + (λ− α)U,∇α)

}
(η(X) + τw(X))− 2cµη(X),

which shows that

g(∇XU,AW ) + g(∇AWU,X)

= −2w(A3X) + 2αw(A2X) + 2cw(AX)

− 2(λ− α)(α+ g(AW,W ))w(AX)

+
µ

α
(α+ g(AW,W ))g(ϕ∇α,X) + g(P2, X),

for some P2 ∈ span{ξ,W}. Adding to the last two equations, we obtain

2g(AW,∇XU) =− 2w(A3X) + 2αw(A2X) + 2cw(AX)

− 2(λ− α)(α+ g(AW,W ))w(AX)

− α

(
α+ g(AW,W ) +

2c

α2
g(AW,W )

)
w(AX)

− (α+ g(AW,W ))
(
ϕ∇µ− µ

α
ϕ∇α

)
+ g(P3, X)

for some P3 ∈ span{ξ,W}.
By the way, applying (6.20) by ϕ, and using (2.8) and (3.4), we find

(6.23) ϕ∇µ− µ

α
ϕ∇α = (2λ− α){−AW + µξ + (λ− α)W} − ρW.
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Because of (4.3), we have

A3W =− c

α
A2W + (λ− α)(α+ g(AW,W ))AW

+ µ
(
α+

c

α
+ g(AW,W )

)
Aξ.

Combining the last three equations, we obtain

g(AW,∇XU)

=
c

α
w(A2X)−

{
µ2 +

(
λ− α+

c

α

)
g(AW,W )

}
w(AX) + g(P4, X)

for some P4 ∈ span{ξ,W}. The completes the proof. 2

Remark 6.6. Wρ = 0 on Ω.

In fact, we have

W (g(AW,W )) = g((∇WA)W,W ) + 2g(AW,∇WW ),

which together with (4.13) and Lemma 6.2 yields

W (g(AW,W )) = 2g(AW,∇WW ).

However, if we take the inner product with AW to (4.19) and make use of Lemma
6.2 and (6.14), then we obtain g(AW,∇WW ) = 0. So we have W (g(AW,W )) = 0,
which connected to (6.21) and Lemma 6.2 gives Wρ = 0.

7. Proof of the Main Theorem

We will continue our discussions under the same assumptions as those in Section
6. Taking the inner product X to (6.20) and differentiating covariantly, we have

(Y µ)(Xµ) + µ(Y (Xµ))− (Y λ− Y α)(Xα)− (λ− α)(Y (Xα))

= (2(Y λ)− Y α)u(AX)

+ (2λ− α)(g((∇YA)U,X) + g(A∇Y U,X))

+ (Y ρ)u(X) + ρg(∇Y U,X) + g((2λ− α)AU + ρU,∇YX).

Taking the skew-symmetric part of this and using (2.4), we find

(7.1)

(Xλ)(Y α)− (Y λ)(Xα)

+(2(Xλ)−Xα)u(AY )− (2(Y λ)− Y α)u(AX)

= cµ(2λ− α)(η(Y )w(X)− η(X)w(Y ))

+(2λ− α)(g(A∇Y U,X)− g(A∇XU, Y ))

+(Y ρ)u(X)− (Xρ)u(Y ) + ρ(g(∇Y U,X)− g(∇XU, Y )),
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where we have used (2.4) and (2.8). Differentiating (6.21) covariantly and taking
the inner product ξ to this, it follows from Lemma 6.2 that ξρ = 0. Putting Y = ξ
in (7.1) and using (2.6) and ξρ = 0, we find

cµ(2λ− α)w(X)− (2λ− α){g(αξ + µW,∇XU) + g(∇ξU,AX)}
− ρ(g(∇XU, ξ)− g(∇ξU,X)) = 0,

or using (2.10), (5.7) and Lemma 6.2,

(7.2) (2λ− α)A∇ξU + ρ∇ξU + µρAW ∈ span{ξ,W}.

If we put Y =W in (7.1) and take account of Lemma 6.2 and Remark 6.6, then we
have

(2λ− α){g(∇XU,AW )− g(A∇WU,X) + cµη(X)}
+ ρ(g(∇XU,W )− g(∇WU,X)) = 0.

(7.3)

By the way, putting Y =W in (5.9), we have

g(∇XU,W )− g(∇WU,X)

= −
(
α+

2c

α

)
w(AX)− g(ϕ∇µ,X) + g(P5, X)

for some P5 ∈ span{ξ,W}, which together with Lemma 6.5 and (7.3) implies that

(2λ− α)
{ c
α
A2W −

(
µ2 +

(
λ− α+

c

α

)
g(AW,W )

)
AW −A∇WU

}
− ρ

{(
α+

2c

α

)
AW + ϕ∇µ

}
∈ span{ξ,W}.

It follows from this and (4.14) that

(2λ− α)Aϕ∇µ+ ρϕ∇µ

+ (2λ− α)
{ c
α
A2W +

(
λ− α+

c

α

)
g(AW,W )AW

}
+ ρ

(
α+

2c

α

)
AW ∈ span{ξ,W}.

If we take account of (4.3), (6.21) and (6.23), then the last equation can be written
as

(7.4)

µ

α
(2λ− α)Aϕ∇µ+ ρϕ∇µ+ (2λ− α)2

(
λ− α+

c

α

)
AW

+(2λ− α)
{ c
α
A2W + ((λ− α)2 − c)AW

}
+ρ

(
α+

2c

α

)
AW ∈ span{ξ,W}.
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On the other hand, from (3.7) we have

A∇ξU = µ(3λ− 2α)AW − 3µA2W + 2µ2Aξ +Aϕ∇α,

where we have used (2.6). Substituting this into (7.2), we find

(2λ− α)Aϕ∇α+ ρϕ∇α− 2µρAW

− (2λ− α)µ{3A2W + (2α− 3λ)AW} ∈ span{ξ,W}.

Combining this to (7.4), we obtain

(λ− α)

{
− ρ

µ
ϕ∇α+ 2ρAW + (2λ− α)(3A2W + (2α− 3λ)AW )

}
+ ρϕ∇µ+ (2λ− α)2

(
λ− α+

c

α

)
AW +

c

α
(2λ− α)A2W

+ (2λ− α){(λ− α)2 − c}AW + ρ

(
α+

2c

α

)
AW ∈ span{ξ,W},

which together with (4.3) and (6.23) implies that

{2ρα− (2λ− α)(µ2 + c)}AW ∈ span{ξ,W},

that is,
{2ρα− (2λ− α)(µ2 + c)}(AW − µξ − g(AW,W )) = 0.

According to Lemma 5.2, we see that

(7.5) 2ρα = (2λ− α)(µ2 + c).

From this fact and Lemma 6.4, we see that 2αθ = (µ2+ c)2 by virtue of 2λ−α ̸= 0.
Thus, (6.19) is reduced to

(7.6) κ∇α = 2αAU + (µ2 + c)U

with the aid of Remark 6.3, where we have put

κ =
α2(h− λ)

2(µ2 + c)
.

Differentiating this covariantly and taking the inner product with ξ, it follows from
(6.1) and Lemma 6.2 that ξκ = 0.

As in the same method as that used from (6.6) to drive (6.7), we can deduce
from (7.6) that

2αg(A∇ξU,X) + (µ2 + c)g(∇ξU,X)

= µ{−2cαw(X)− 2α2w(AX)− (µ2 + c)w(AX) + 2αg(∇XU,W )},
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which together with (5.7) implies that

(7.7) 2αA∇ξU + (µ2 + c)∇ξU + µ(µ2 + c)AW ∈ span{ξ,W}.

On the other hand, applying (7.6) by ϕ and using (2.6) and (3.3), we find

κ

µ
ϕ∇α = −2αAW + (µ2 + c)W + 2αµξ,

which together with (4.3) yields

κ

µ
Aϕ∇α = (µ2 + c)AW − 2µg(AW,W )Aξ − 2cµξ.

From Lemma 6.1 we have κ ̸= 0 and hence combining the last two equations, it is
verified that

(7.8) 2αAϕ∇α+ (µ2 + c)ϕ∇α ∈ span{ξ,W}.

By the way, applying (3.7) by A and using (4.3), we find

2αA∇ξU + (µ2 + c)∇ξU − 2αµ

(
3λ− 2α+

3c

α

)
AW

+ 3µ(µ2 + c)AW − 2αAϕ∇α− (µ2 + c)ϕ∇α ∈ span{ξ,W},

which together with (7.7) and (7.8) gives

(2µ2 + α2 + 2c)(AW − µξ − g(AW,W )) = 0.

Owing to Lemma 5.2, we see that 2µ2 + α2 + 2c = 0, which implies that 2µ∇µ +
α∇α = 0. Hence (6.20) reformed as

(7.9) ∇α+ 2AU +
µ2 + c

α
U = 0

by virtue of 2λ− α ̸= 0 on Ω, where we have used (7.5). Combining this to (6.19),
we have {

µ2 + c+
1

2
α(h− λ)

}
AU =

1

4
{4θ + (h− λ)(µ2 + c)}U.

According to Remark 5.1, it follows that µ2+ c+(1/2)α(h−λ) = 0, which together
with (6.1) gives µ is constant and hence α is constant. Thus (7.9) becomes AU =
−{(µ2 + c)/(2α)}U , a contradiction by virtue of Remark 5.1.

Therefore we verify that Ω = ∅, that is, Aξ = αξ on M . Thus, from (2.18)
we see that RξS = SRξ. Hence from Theorem 1.2 ([9]) M is homogeneous real
hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies ∇ϕ∇ξξRξ = 0. Since TrA is
constant and (2.16), it is easy to see that ϕRξ = Rξϕ and TrRξ is constant.
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Consequently we conclude that

Theorem 7.1. Let M be a real hypersurface of a complex space form Mn(c), c ̸=
0, n ≥ 3 which satisfies ∇ϕ∇ξξRξ = 0 and TrRξ is constant. Then M holds ϕRξ =
Rξϕ if and only if Aξ = 0 or M is locally congruent to one of following:

(I) In cases that Mn(c) = PnC with η(Aξ) ̸= 0,

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4;

(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−2},
where 0 < r < π/2 and r ̸= π/4.

(II) In cases Mn(c) = HnC,

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
Hn−1C;

(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.
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[16] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space
forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 1005-
1009.

[17] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka
J. Math., 19(1973), 495-506.

[18] R. Takagi, Real hypersurfaces in a complex projective space with constant principal
curvatures I, II, J. Math. Soc., 15(1975), 43-53, 507-516.


