Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

U-Hang Ki
The National Academy of Siences, Seoul 06579, Korea
e-mail: uhangki2005@naver.com
Soo Jin Kim
Department of Mathematics Chosun University, Gwangju 61452, Korea
e-mail: eel2372@naver.com
\section*{Hiroyuki Kurihara*}
The College of Education, Ibaraki University, Mito 310-8512, Japan
e-mail: hiroyuki.kurihara.math@vc.ibaraki.ac.jp

Abstract. Let M be a real hypersurface of a complex space form with almost contact metric structure (ϕ, ξ, η, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ is $\phi \nabla_{\xi} \xi$-parallel and R_{ξ} commute with the structure tensor ϕ, then M is a homogeneous real hypersurface of Type A provided that $\operatorname{Tr} R_{\xi}$ is constant.

1. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature $4 c \neq 0$ is called a complex space form, which is denoted by $M_{n}(c)$. So naturally there exists a Kähler structure J and Kähler metric \tilde{g} on $M_{n}(c)$. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n}(\mathbb{C})$, or complex hyperbolic space $H_{n}(\mathbb{C})$ as $c>0$ or $c<0$. Now let us consider a real hypersurface M in $M_{n}(c)$. Then we also denote by g the induced Riemannian metric of M and by N a local unit normal vector field of M in $M_{n}(c)$. Further, A denotes by the shape operator of M in $M_{n}(c)$. Then, an almost contact metric structure (ϕ, ξ, η, g) of M is naturally induced from the

[^0]Kähler structure of $M_{n}(c)$ as follows:

$$
\phi X=(J X)^{T}, \xi=-J N, \eta(X)=g(X, \xi), X \in T M
$$

where $T M$ denotes the tangent bundle of M and ($)^{T}$ the tangential component of a vector. The Reeb vector ξ is said to be principal if $A \xi=\alpha \xi$, where $\alpha=\eta(A \xi)$. A real hypersurface is said to a Hopf hypersurface if the Reeb vector ξ of M is principal. Hopf hypersurfaces is realized as tubes over certain submanifolds in $P_{n} \mathbb{C}$, by using its focal map (see Cecil and Ryan [2]). By making use of those results and the mentioned work of Takagi ([17], [18]), Kimura [11] proved the local classification theorem for Hopf hypersurfaces of $P_{n} \mathbb{C}$ whose all principal curvatures are constant. For the case $H_{n} \mathbb{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi's list or Berndt's list, a particular type of tubes over totally geodesic $P_{k} \mathbb{C}$ or $H_{k} \mathbb{C}(0 \leq k \leq n-1)$ adding a horosphere in $H_{n} \mathbb{C}$, which is called type A, has a lot of nice geometric properties. For example, Okumura [13](resp. Montiel and Romero [12]) showed that a real hypersurface in $P_{n} \mathbb{C}$ (resp. $H_{n} \mathbb{C}$) is locally congruent to one of real hypersurfaces of type A if and only if the Reeb flow ξ is isometric or equivalently the structure operator ϕ commutes with the shape operator A.

The Reeb vector field ξ plays an important role in the theory of real hypersurfaces in a complex space form $M_{n}(c)$. Related to the Reeb vector field ξ the Jacobi operator R_{ξ} defined by $R_{\xi}=R(\cdot, \xi) \xi$ for the curvature tensor R on a real hypersurface M in $M_{n}(c)$ is said to be a structure Jacobi operator on M. The structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho and first author started the study on real hypersurfaces in complex space form by using the operator R_{ξ}. In particular the structure Jacobi operator has been studied under the various commutative conditions ([4], [5], [7], [16]). For example, Pérez et al. [16] called that real hypersurfaces M has commuting structure Jacobi operator if $R_{\xi} R_{X}=R_{X} R_{\xi}$ for any vector field X on M, and proved that there exist no real hypersurfaces in $M_{n}(c)$ with commuting structure Jacobi operator. On the other hand Ortega et al. [14] have proved that there are no real hypersurfaces in $M_{n}(c)$ with parallel structure Jacobi operator R_{ξ}, that is, $\nabla_{X} R_{\xi}=0$ for any vector field X on M. More generally, such a result has been extended by [15]. In this situation, if naturally leads us to be consider another condition weaker than parallelness. In the preceding work, we investigate the weaker condition ξ-parallelness, that is, $\nabla_{\xi} R_{\xi}=0$ (cf. [4], [7], [8]). Moreover some works have studied several conditions on the structure Jacobi operator $R_{\xi}([3],[5],[7]$ and $[8])$. The following facts are used in this paper without proof.
Theorem 1.1. (Ki, Kim and Lim [5]) Let M be a real hypersurface in a nonflat complex space form $M_{n}(c), c \neq 0$ which satisfies $R_{\xi}(A \phi-\phi A)=0$. Then M is a Hopf hypersurface in $M_{n}(c)$. Further, M is locally congruent to one of the following hypersurfaces:
(I) In cases that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$.
(II) In cases $M_{n}(c)=H_{n} \mathbb{C}$,
(A_{0}) a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

Theorem 1.2. (Ki, Nagai and Takagi [9]) Let M be a real hypersurface in a nonflat complex space form $M_{n}(c), c \neq 0$ If M satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$. Then M is the same types as those in Theorem 1.1, where S denotes the Ricci tensor of M.

In [6], the authors started the study on real hypersurfaces in a complex space form with $\phi \nabla_{\xi} \xi$-parallel structure Jacobi operator R_{ξ}, that is, $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ for the vector $\phi \nabla_{\xi} \xi$ orthogonal to ξ. In this paper we invetigate the structure Jacobi operator is $\phi \nabla_{\xi} \xi$-parallel under the condition that the structure Jacobi operator commute with the structure tensor ϕ. We prove that if the structure Jacobi operator R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel and R_{ξ} commute with the structure tensor ϕ, then M is homogeneous real hypersurfaces of Type A provided that $\operatorname{Tr} R_{\xi}$ is constant.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_{n}(c), c \neq 0$ with almost complex structure J, and N be a unit normal vector field on M. The Riemannian connection $\tilde{\nabla}$ in $M_{n}(c)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M :

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \tilde{\nabla}_{X} N=-A X
$$

where g denotes the Riemannian metric of M induced from that of $M_{n}(c)$ and A denotes the shape operator of M in direction N. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi .
$$

We call ξ the structure vector field (or the Reeb vector field) and its flow also denoted by the same latter ξ. The Reeb vector field ξ is said to be principal if $A \xi=\alpha \xi$, where $\alpha=\eta(A \xi)$.

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field ξ is principal. It is known that the aggregate (ϕ, ξ, η, g) is an almost contact metric
structure on M, that is, we have

$$
\begin{aligned}
& \phi^{2} X=-X+\eta(X) \xi, g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \\
& \eta(\xi)=1, \phi \xi=0, \eta(X)=g(X, \xi)
\end{aligned}
$$

for any vector fields X and Y on M. From Kähler condition $\tilde{\nabla} J=0$, and taking account of above equations, we see that

$$
\begin{align*}
& \nabla_{X} \xi=\phi A X \tag{2.1}\\
& \left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.2}
\end{align*}
$$

for any vector fields X and Y tangent to M.
Since we consider that the ambient space is of constant holomorphic sectional curvature $4 c$, equations of Gauss and Codazzi are respectively given by

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{2.3}\\
& -2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y, \\
\left(\nabla_{X} A\right) Y- & \left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{2.4}
\end{align*}
$$

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote by $\alpha=$ $\eta(A \xi), \beta=\eta\left(A^{2} \xi\right)$ and $h=\operatorname{Tr} A$, and for a function f we denote by ∇f the gradient vector field of f.

From the Gauss equation (2.3), the Ricci tensor S of M is given by

$$
\begin{equation*}
S X=c\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X \tag{2.5}
\end{equation*}
$$

for any vector field X on M.
Now, we put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{2.6}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. In the sequel, we put $U=\nabla_{\xi} \xi$, then by (2.1) we see that

$$
\begin{equation*}
U=\mu \phi W \tag{2.7}
\end{equation*}
$$

and hence U is orthogonal to W. So we have $g(U, U)=\mu^{2}$. Using (2.7), it is clear that

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{2.8}
\end{equation*}
$$

which shows that $g(U, U)=\beta-\alpha^{2}$. Thus it is seen that

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} \tag{2.9}
\end{equation*}
$$

Making use of (2.1), (2.7) and (2.8), it is verified that

$$
\begin{gather*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{2.10}\\
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) \tag{2.11}
\end{gather*}
$$

because W is orthogonal to ξ.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=-\phi \nabla_{X} U+g(A U+\nabla \alpha, X) \xi-A \phi A X+\alpha \phi A X \tag{2.12}
\end{equation*}
$$

which together with (2.4) implies that

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{2.13}
\end{equation*}
$$

Applying (2.12) by ϕ and making use of (2.11), we obtain

$$
\begin{equation*}
\phi\left(\nabla_{X} A\right) \xi=\nabla_{X} U+\mu g(A W, X) \xi-\phi A \phi A X-\alpha A X+\alpha g(A \xi, X) \xi \tag{2.14}
\end{equation*}
$$

which connected to (2.1), (2.9) and (2.13) gives

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{2.15}
\end{equation*}
$$

Using (2.3), the structure Jacobi operator R_{ξ} is given by

$$
\begin{equation*}
R_{\xi}(X)=R(X, \xi) \xi=c\{X-\eta(X) \xi\}+\alpha A X-\eta(A X) A \xi \tag{2.16}
\end{equation*}
$$

for any vector field X on M. Differentiating this covariantly along M, we find

$$
\begin{align*}
g\left(\left(\nabla_{X} R_{\xi}\right) Y, Z\right)= & g\left(\nabla_{X}\left(R_{\xi} Y\right)-R_{\xi}\left(\nabla_{X} Y\right), Z\right) \\
= & -c\left(\eta(Z) g\left(\nabla_{X} \xi, Y\right)+\eta(Y) g\left(\nabla_{X} \xi, Z\right)\right) \\
& +(X \alpha) g(A Y, Z)+\alpha g\left(\left(\nabla_{X} A\right) Y, Z\right) \tag{2.17}\\
& -\eta(A Z)\left\{g\left(\left(\nabla_{X} A\right) \xi, Y\right)+g(A \phi A X, Y)\right\} \\
& -\eta(A Y)\left\{g\left(\left(\nabla_{X} A\right) \xi, Z\right)+g(A \phi A X, Z)\right\} .
\end{align*}
$$

From (2.5) and (2.16), we have

$$
\begin{align*}
\left(R_{\xi} S-S R_{\xi}\right)(X)= & -\eta(A X) A^{3} \xi+\eta\left(A^{3} X\right) A \xi-\eta\left(A^{2} X\right)(h A \xi-c \xi) \\
& +(h \eta(A X)-c \eta(X)) A^{2} \xi-c h(\eta(A X) \xi-\eta(X) A \xi) . \tag{2.18}
\end{align*}
$$

Let Ω be the open subset of M defined by

$$
\Omega=\{p \in M ; A \xi-\alpha \xi \neq 0\}
$$

At each point of Ω, the Reeb vector field ξ is not principal. That is, ξ is not an eigenvector of the shape operator A of M if $\Omega \neq \emptyset$.

In what follows we assume that Ω is not an empty set in order to prove our main theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns the set Ω.

3. Real Hypersurfaces Satisfying $R_{\xi} \phi=\phi R_{\xi}$

Let M be a real hypersurface in $M_{n}(c), c \neq 0$. We suppose that $R_{\xi} \phi=\phi R_{\xi}$. Then by using (2.16) we have

$$
\begin{equation*}
\alpha(\phi A X-A \phi X)=g(A \xi, X) U+g(U, X) A \xi \tag{3.1}
\end{equation*}
$$

Then, using (3.1), it is clear that $\alpha \neq 0$ on Ω. So a function λ given by $\beta=\alpha \lambda$ is defined. Because of (2.9), we have

$$
\begin{equation*}
\mu^{2}=\alpha \lambda-\alpha^{2} \tag{3.2}
\end{equation*}
$$

Replacing X by U in (3.1) and taking account of (2.8), we find

$$
\begin{equation*}
\phi A U=\lambda A \xi-A^{2} \xi \tag{3.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\phi A^{2} \xi=A U+\lambda U \tag{3.4}
\end{equation*}
$$

because U is orthogonal to $A \xi$. From this and (2.6) we have

$$
\begin{equation*}
\mu \phi A W=A U+(\lambda-\alpha) U \tag{3.5}
\end{equation*}
$$

which together with (2.7) yields

$$
\begin{equation*}
g(A W, U)=0 \tag{3.6}
\end{equation*}
$$

Using (2.6) and (3.3), we can write (2.15) as

$$
\begin{equation*}
\nabla_{\xi} U=(3 \lambda-2 \alpha) A \xi-3 \mu A W-\alpha \lambda \xi+\phi \nabla \alpha . \tag{3.7}
\end{equation*}
$$

Since $\alpha \neq 0$ on Ω, (3.1) reformed as

$$
\begin{equation*}
(\phi A-A \phi) X=\eta(X) U+u(X) \xi+\tau(u(X) W+w(X) U) \tag{3.8}
\end{equation*}
$$

where a 1-form u is defined by $u(X)=g(U, X)$ and w by $w(X)=g(W, X)$, where we put

$$
\begin{equation*}
\alpha \tau=\mu, \lambda-\alpha=\mu \tau \tag{3.9}
\end{equation*}
$$

Differentiating (3.8) covariantly and taking the inner product with any vector field Z, we find

$$
\begin{align*}
& g\left(\phi\left(\nabla_{Y} A\right) X, Z\right)+g\left(\phi\left(\nabla_{Y} A\right) Z, X\right) \\
& =-\eta(A X) g(A Y, Z)-g(A X, Y) \eta(A Z) \\
& \quad+g\left(A^{2} X, Y\right) \eta(Z)+\eta(X) g\left(A^{2} Y, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Y} U, Z\right) \\
& \quad+g\left(\nabla_{Y} U, X\right)(\eta(Z)+\tau w(Z)) \tag{3.10}\\
& \quad+u(X) g\left(\nabla_{Y} \xi, Z\right)+g\left(\nabla_{Y} \xi, X\right) u(Z) \\
& \quad+(Y \tau)(u(X) w(Z)+u(Z) w(X)) \\
& \quad+\tau\left(u(X) g\left(\nabla_{Y} W, Z\right)+g\left(\nabla_{Y} W, X\right) u(Z)\right)
\end{align*}
$$

because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect to X and Y, and making use of the Codazzi equation (2.4), we find (3.11)

$$
\begin{aligned}
& c(\eta(X) g(Y, Z)-\eta(Y) g(X, Z))+g\left(\left(\nabla_{X} A\right) \phi Y, Z\right)-g\left(\left(\nabla_{Y} A\right) \phi X, Z\right) \\
& =-\eta(A X) g(A Y, Z)+\eta(A Y) g(A X, Z)+\eta(X) g\left(A^{2} Y, Z\right)-\eta(Y) g\left(A^{2} X, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Y} U, Z\right)-(\eta(Y)+\tau w(Y)) g\left(\nabla_{X} U, Z\right) \\
& \quad+\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)(\eta(Z)+\tau w(Z)) \\
& \quad+u(X) g\left(\nabla_{Y} \xi, Z\right)-u(Y) g\left(\nabla_{X} \xi, Z\right)+\left(g\left(\nabla_{Y} \xi, X\right)-g\left(\nabla_{X} \xi, Y\right)\right) u(Z) \\
& \quad+(Y \tau)(u(X) w(Z)+u(Z) w(X))-(X \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& \quad+\tau\left\{u(X) g\left(\nabla_{Y} W, Z\right)-u(Y) g\left(\nabla_{X} W, Z\right)\right\} \\
& \quad+\tau\left\{\left(g\left(\nabla_{Y} W, X\right)-g\left(\nabla_{X} W, Y\right)\right) u(Z)\right\} .
\end{aligned}
$$

Interchanging Y and Z in (3.10), we obtain

$$
\begin{aligned}
& g\left(\phi\left(\nabla_{Z} A\right) X, Y\right)+g\left(\phi\left(\nabla_{Z} A\right) Y, X\right) \\
&=-\eta(A X) g(A Y, Z)-g(A X, Z) \eta(A Y) \\
&+g\left(A^{2} X, Z\right) \eta(Y)+\eta(X) g\left(A^{2} Y, Z\right)+(\eta(X)+\tau w(X)) g\left(\nabla_{Z} U, Y\right) \\
&+g\left(\nabla_{Z} U, X\right)(\eta(Y)+\tau w(Y))+u(X) g\left(\nabla_{Z} \xi, Y\right)+g\left(\nabla_{Z} \xi, X\right) u(Y) \\
&+(Z \tau)(u(X) w(Y)+u(Y) w(X))+\tau\left(u(X) g\left(\nabla_{Z} W, Y\right)+g\left(\nabla_{Z} W, X\right) u(Y)\right),
\end{aligned}
$$

or, using (2.4)

$$
\begin{aligned}
& g\left(\phi\left(\nabla_{X} A\right) Z, Y\right)+g\left(\phi\left(\nabla_{Y} A\right) Z, X\right)+c(\eta(X) g(Z, Y)+\eta(Y) g(Z, X)-2 \eta(Z) g(X, Y)) \\
&=-\eta(A X) g(A Y, Z)-g(A X, Z) \eta(A Y)+g\left(A^{2} X, Z\right) \eta(Y)+\eta(X) g\left(A^{2} Y, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Z} U, Y\right)+g\left(\nabla_{Z} U, X\right)(\eta(Y)+\tau w(Y)) \\
& \quad+u(X) g\left(\nabla_{Z} \xi, Y\right)+g\left(\nabla_{Z} \xi, X\right) u(Y) \\
& \quad+(Z \tau)(u(X) w(Y)+u(Y) w(X))+\tau\left(u(X) g\left(\nabla_{Z} W, Y\right)+g\left(\nabla_{Z} W, X\right) u(Y)\right) .
\end{aligned}
$$

Combining this to (3.11), we have

$$
\begin{align*}
& 2 g\left(\left(\nabla_{Y} A\right) \phi X, Z\right)+2 c(\eta(Z) g(X, Y)-\eta(X) g(Y, Z)) \\
& +2 \eta(X) g\left(A^{2} Z, Y\right)-2 \eta(A X) g(A Z, Y) \\
& +\left(g\left(\nabla_{Z} U, X\right)-g\left(\nabla_{X} U, Z\right)\right)(\eta(Y)+\tau w(Y)) \\
& +\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)(\eta(Z)+\tau w(Z)) \\
& +\left(g\left(\nabla_{Z} U, Y\right)+g\left(\nabla_{Y} U, Z\right)\right)(\eta(X)+\tau w(X)) \\
& +\left(g\left(\nabla_{Z} \xi, X\right)-g\left(\nabla_{X} \xi, Z\right)\right) u(Y)+\left(g\left(\nabla_{Y} \xi, X\right)-g\left(\nabla_{X} \xi, Y\right)\right) u(Z) \tag{3.12}\\
& +\left(g\left(\nabla_{Z} \xi, Y\right)+g\left(\nabla_{Y} \xi, Z\right)\right) u(X)+(Y \tau)(u(X) w(Z)+u(Z) w(X)) \\
& +(Z \tau)(u(X) w(Y)+u(Y) w(X))-(X \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& +\tau\left\{u(X)\left(g\left(\nabla_{Z} W, Y\right)+g\left(\nabla_{Y} W, Z\right)\right)\right. \\
& +u(Z)\left(g\left(\nabla_{X} W, Y\right)-g\left(\nabla_{Y} W, X\right)\right) \\
& \left.+u(Y)\left(g\left(\nabla_{Z} W, X\right)-g\left(\nabla_{X} W, Z\right)\right)\right\}=0 .
\end{align*}
$$

If we put $X=\xi$ in (3.12), then we have

$$
\begin{align*}
& g\left(\nabla_{Y} U, Z\right)+g\left(\nabla_{Z} U, Y\right)+2 c(\eta(Z) \eta(Y)-g(Z, Y)) \\
& +2 g\left(A^{2} Y, Z\right)-2 \alpha g(A Y, Z)-d u(\xi, Z)(\eta(Y)+\tau w(Y)) \\
& -d u(\xi, Y)(\eta(Z)+\tau w(Z))-2 u(Y) u(Z) \tag{3.13}\\
& -(\xi \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& -\tau\{u(Z) d w(\xi, Y)+u(Y) d w(\xi, Z)\}=0
\end{align*}
$$

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying $R_{\xi} \phi=\phi R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$

We will continue our discussions under the same hypothesis $R_{\xi} \phi=\phi R_{\xi}$ as in Section 3. Furthermore, suppose that $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ and then $\nabla_{W} R_{\xi}=0$ since we assume that $\mu \neq 0$. Replacing X by W in (2.17), we find

$$
\begin{align*}
& (W \alpha) g(A Y, Z)-c(\eta(Z) g(\phi A W, Y)+\eta(Y) g(\phi A W, Z)) \\
& +\alpha g\left(\left(\nabla_{W} A\right) Y, Z\right)-\eta(A Z)\left\{g\left(\left(\nabla_{W} A\right) \xi, Y\right)+g(A \phi A W, Y)\right\} \tag{4.1}\\
& -\eta(A Y)\left\{g\left(\left(\nabla_{W} A\right) \xi, Z\right)+g(A \phi A W, Z)\right\}=0
\end{align*}
$$

by virtue of $\nabla_{W} R_{\xi}=0$. Putting $Y=\xi$ in this and making use of (2.13) and (3.6), we obtain

$$
\begin{equation*}
\alpha A \phi A W+c \phi A W=0 \tag{4.2}
\end{equation*}
$$

because U and W are mutually orthogonal. From this and (2.16), it is seen that $R_{\xi} \phi A W=0$ by virtue of (3.6), and hence $R_{\xi} A W=0$ which together with (2.16) implies that

$$
\begin{equation*}
\alpha A^{2} W=-c A W+c \mu \xi+\mu(\alpha+g(A W, W)) A \xi \tag{4.3}
\end{equation*}
$$

which tells us that

$$
\begin{equation*}
\alpha g\left(A^{2} W, W\right)=\left(\mu^{2}-c\right) g(A W, W)+\alpha \mu^{2} . \tag{4.4}
\end{equation*}
$$

Since $\alpha \neq 0, \beta=\alpha \lambda$ and (3.2), we see that

$$
\begin{equation*}
g\left(A^{2} W, W\right)=\left(\lambda-\alpha-\frac{c}{\alpha}\right) g(A W, W)+\mu^{2} . \tag{4.5}
\end{equation*}
$$

Combining (3.5) to (4.2), we get

$$
\begin{equation*}
\alpha A^{2} U=-\left(\mu^{2}+c\right) A U-c(\lambda-\alpha) U \tag{4.6}
\end{equation*}
$$

If we apply μW to (3.3) and make use of (2.6), then we find

$$
\begin{equation*}
g(A U, U)=\mu^{2}(g(A W, W)+\alpha-\lambda) \tag{4.7}
\end{equation*}
$$

Using (4.2), we see from (4.1)

$$
\begin{aligned}
\alpha\left(\nabla_{W} A\right) X= & -(W \alpha) A X+\eta(A X)\left(\nabla_{W} A\right) \xi+g\left(\left(\nabla_{W} A\right) \xi, X\right) A \xi \\
& -\frac{c}{\alpha} \mu(w(X) \phi A W+g(\phi A W, X) W)
\end{aligned}
$$

for any vector field X, which together with (3.5) yields

$$
\begin{align*}
\alpha\left(\nabla_{W} A\right) X= & -(W \alpha) A X+\eta(A X)\left(\nabla_{W} A\right) \xi+g\left(\left(\nabla_{W} A\right) \xi, X\right) A \xi \tag{4.8}\\
& -\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(w(X) U+u(X) W)\} .
\end{align*}
$$

Now, if we put $X=W$ in (2.12), and make use of (3.5) and (4.2), then we find

$$
\begin{equation*}
\left.\left(\nabla_{W} A\right) \xi=-\phi \nabla_{W} U+(W \alpha) \xi+\frac{1}{\mu}\left(\alpha+\frac{c}{\alpha}\right)\{A U+(\lambda-\alpha) U)\right\} \tag{4.9}
\end{equation*}
$$

Also, if we take the inner product (2.12) with $A \xi$ and take account of (2.6), (3.2) and (3.4), then we obtain

$$
\alpha(X \alpha)+\mu(X \mu)=g\left(\alpha \xi+\mu W,\left(\nabla_{X} A\right) \xi\right)-g\left(A^{2} U+\lambda A U, X\right)
$$

which together with (2.4), (2.13) and (4.6) yields

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=-\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U+\mu \nabla \mu . \tag{4.10}
\end{equation*}
$$

If we take the inner product (4.10) with ξ and make use of (2.13) and (3.6), then we find

$$
\begin{equation*}
W \alpha=\xi \mu . \tag{4.11}
\end{equation*}
$$

Using (4.10), we can write (4.8) as

$$
\begin{aligned}
& \alpha\left(\nabla_{W} A\right) X+(W \alpha) A X \\
& +\frac{1}{\mu} \eta(A X)\left\{\left(\alpha+\frac{c}{\alpha}\right) A U+\frac{c}{\alpha}(\lambda+\alpha) U-\mu \nabla \mu\right\} \\
& +\frac{1}{\mu}\left\{\left(\alpha+\frac{c}{\alpha}\right) u(A X)+\frac{c}{\alpha}(\lambda+\alpha) u(X)-\mu(X \mu)\right\} A \xi \\
& +\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(w(X) U+u(X) W)\}=0 .
\end{aligned}
$$

Putting $X=W$ in this, we get
(4.13) $\alpha\left(\nabla_{W} A\right) W+(W \alpha) A W-(W \mu) A \xi+\left(\alpha+\frac{2 c}{\alpha}\right) A U+\frac{2 c \lambda}{\alpha} U-\mu \nabla \mu=0$.

Combining (4.9) to (4.10), we obtain

$$
\mu \phi \nabla_{W} U-\mu(W \alpha) \xi+\mu \nabla \mu=2\left(\alpha+\frac{c}{\alpha}\right) A U+\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) U
$$

If we apply ϕ to this and make use of (2.8), (2.11) and (3.3), then we find

$$
\begin{aligned}
& -\mu \nabla_{W} U-\mu^{2} g(A W, W) \xi+\mu \phi \nabla \mu \\
& =2\left(\alpha+\frac{c}{\alpha}\right)\left(\lambda A \xi-A^{2} \xi\right)-\mu\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) W
\end{aligned}
$$

which together with (2.6) yields

$$
\begin{align*}
\mu \nabla_{W} U= & \mu \phi \nabla \mu+\left(2 c-\mu^{2}\right) A \xi+2 \mu\left(\alpha+\frac{c}{\alpha}\right) A W \tag{4.14}\\
& -\left(\alpha \mu^{2}+2 c \lambda+\mu^{2} g(A W, W)\right) \xi
\end{align*}
$$

Now, we can take a orthonormal frame field $\left\{e_{0}=\xi, e_{1}=W, e_{2}, \ldots, e_{n}, e_{n+1}=\right.$ $\left.\phi e_{1}=(1 / \mu) U, e_{n+2}=\phi e_{2}, \ldots, e_{2 n}=\phi e_{n}\right\}$ of M. Differentiating (2.6) covariantly and making use of (2.1), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi+A \phi A X=(X \alpha) \xi+\alpha \phi A X+(X \mu) W+\mu \nabla_{X} W \tag{4.15}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mu \operatorname{div} W=\mu \sum_{i=0}^{2 n} g\left(\nabla_{e_{i}} W, e_{i}\right)=\xi h-\xi \alpha-W \mu . \tag{4.16}
\end{equation*}
$$

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we have

$$
\begin{align*}
- & 2 c g(\phi X, Y)+2 g(A \phi A X, Y) \\
= & (X \alpha) \eta(Y)-(Y \alpha) \eta(X)+\alpha g((\phi A+A \phi) X, Y) \\
& +(X \mu) w(Y)-(Y \mu) w(X) \tag{4.17}\\
& +\mu\left(g\left(\nabla_{X} W, Y\right)-g\left(\nabla_{Y} W, X\right)\right) .
\end{align*}
$$

Putting $X=\xi$ in this and using (2.10) and (4.11), we have

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(W \alpha) W \tag{4.18}
\end{equation*}
$$

Putting $X=\mu W$ in (4.15) and taking account of (4.10), we get

$$
\begin{aligned}
& -\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U+\mu \nabla \mu+\mu A \phi A W \\
& =\mu(W \alpha) \xi+\mu(W \mu) W+\mu \alpha \phi A W+\mu^{2} \nabla_{W} W
\end{aligned}
$$

or, using (3.5) and (4.2),
(4.19) $\mu^{2} \nabla_{W} W=-2\left(\alpha+\frac{c}{\alpha}\right) A U-\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) U+\mu \nabla \mu-\mu(W \alpha) \xi-\mu(W \mu) W$.

Now, putting $X=U$ in (4.17) and making use of (2.6) and (3.3), we have

$$
\begin{aligned}
& \mu\left(g\left(\nabla_{U} W, Y\right)-g\left(\nabla_{Y} W, U\right)\right) \\
& =(2 c \mu-U \mu) w(Y)-(U \alpha) \eta(Y) \\
& \quad+\mu^{2} \eta(A Y)+2 \lambda \mu w(A Y)-2 \mu w\left(A^{2} Y\right)
\end{aligned}
$$

which together with (4.3) gives

$$
\begin{align*}
\mu d w(U, Y)= & (2 c \mu-U \mu) w(Y)-\{U \alpha+2 c(\lambda-\alpha)\} \eta(Y) \\
& -\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y) . \tag{4.20}
\end{align*}
$$

Because of (2.10) and (4.18), it is verified that

$$
\begin{equation*}
\mu d w(\xi, X)=2 u(A X)-\alpha u(X)-(\xi \alpha) \eta(X)-(W \alpha) w(X)+X \alpha \tag{4.21}
\end{equation*}
$$

Using (2.11) and (3.7), we obtain

$$
\begin{equation*}
d u(\xi, X)=(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X)-\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X) \tag{4.22}
\end{equation*}
$$

Using above two equations, (3.13) is reduced to

$$
\begin{aligned}
&\left.g\left(\nabla_{X} U, Y\right)+g\left(\nabla_{Y} U, X\right)\right) \\
&= 2 c(g(X, Y)-\eta(X) \eta(Y))-2 g\left(A^{2} X, Y\right)+2 \alpha g(A X, Y) \\
&+(\xi \tau)(u(X) w(Y)+u(Y) w(X)) \\
&+ \frac{1}{\alpha}(2 u(A X)+X \alpha-(\xi \alpha) \eta(X)-(W \alpha) w(X)) u(Y) \\
&+ \frac{1}{\alpha}(2 u(A Y)+Y \alpha-(\xi \alpha) \eta(Y)-(W \alpha) w(Y)) u(X) \\
&+\{(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X) \\
&-\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X)\}(\eta(Y)+\tau w(Y)) \\
&+\{(3 \lambda-2 \alpha) \eta(A Y)-2 \mu w(A Y) \\
&-\alpha \lambda \eta(Y)+g(\phi \nabla \alpha, Y)\}(\eta(X)+\tau w(X)),
\end{aligned}
$$

where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we find

$$
\begin{equation*}
\operatorname{div} U=2 c(n-1)+\alpha h-\operatorname{Tr} A^{2}+\lambda(\lambda-\alpha) \tag{4.24}
\end{equation*}
$$

Replacing X by U in (4.23) and using (4.6) and (4.7), we find

$$
\begin{aligned}
g & \left(\nabla_{U} U, Y\right)+g\left(\nabla_{Y} U, U\right) \\
= & (\lambda-\alpha)(Y \alpha)+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) u(A Y) \\
& +\left\{\frac{U \alpha}{\alpha}+\frac{2 c \lambda}{\alpha}+2(\lambda-\alpha)(g(A W, W)+\alpha-\lambda)\right\} u(Y) \\
& +\{\mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \eta(Y)+\mu^{2}(\xi \tau) w(Y)
\end{aligned}
$$

Since $g\left(\nabla_{X} U, U\right)=\mu(X \mu)$, it follows that

$$
\begin{align*}
d u(U, X)= & -2 \mu(X \mu)+(\lambda-\alpha)(X \alpha)+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) u(A X) \\
& +\left\{\frac{U \alpha}{\alpha}+\frac{2 c \lambda}{\alpha}+2(\lambda-\alpha)(g(A W, W)+\alpha-\lambda)\right\} u(X) \tag{4.25}\\
& +\{\mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \eta(X)+\mu^{2}(\xi \tau) w(X)
\end{align*}
$$

which implies that

$$
\begin{equation*}
d u(U, W)=-2 \mu(W \mu)+(\lambda-\alpha) W \alpha+\mu^{2}(\xi \tau) \tag{4.26}
\end{equation*}
$$

5. The Exterior Derivative of 1-form u

We will continue our discussions under the hypotheses as those stated in Section 4.

Putting $Z=U$ in (3.12), we find

$$
\begin{aligned}
& -2 \mu g\left(\left(\nabla_{Y} A\right) X, W\right)+2 c \eta(X) u(Y)-d u(U, X)(\eta(Y)+\tau w(Y)) \\
& -d u(U, Y)(\eta(X)+\tau w(X))-d \eta(U, X) u(Y)-d \eta(U, Y) u(X) \\
& +\mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right)+\mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& +\tau\left\{\mu^{2}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right)-d w(U, Y) u(X)-d w(U, X) u(Y)\right\} \\
& -(U \tau)(u(X) w(Y)+u(Y) w(X))=0
\end{aligned}
$$

Because of (2.1), (2.11) and (3.3), we see

$$
d \eta(U, X)=(\lambda-\alpha) \eta(A X)-2 \mu w(A X)
$$

Using this and (2.4), above equation reformed as

$$
\begin{aligned}
& -2 \mu g\left(\left(\nabla_{W} A\right) Y, X\right)-2 c(\eta(Y) u(X)+\eta(X) u(Y))-d u(U, X)(\eta(Y)+\tau w(Y)) \\
& -d u(U, Y)(\eta(X)+\tau w(X))+\mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& -(U \tau)(u(X) w(Y)+u(Y) w(X))-\{(\lambda-\alpha) \eta(A X)-2 \mu w(A X)\} u(Y) \\
& -\{(\lambda-\alpha) \eta(A Y)-2 \mu w(A Y)\} u(X)+\mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
& +\tau\left\{\mu^{2}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right)-d w(U, Y) u(X)-d w(U, X) u(Y)\right\}=0 .
\end{aligned}
$$

Substituting (4.20) into this, we obtain

$$
\begin{aligned}
2 \mu & \left(\left(\nabla_{W} A\right) Y, X\right) \\
= & -2 c(\eta(Y) u(X)+\eta(X) u(Y))-d u(U, X)(\eta(Y)+\tau w(Y)) \\
\quad & -d u(U, Y)(\eta(X)+\tau w(X))+\mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& -(U \tau)(u(X) w(Y)+u(Y) w(X))-\{(\lambda-\alpha) \eta(A X)-2 \mu w(A X)\} u(Y) \\
& -\{(\lambda-\alpha) \eta(A Y)-2 \mu w(A Y)\} u(X)+\mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
+ & \tau \mu^{2}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right) \\
& -\frac{1}{\alpha} u(X)\{(2 c \mu-U \mu) w(Y)-(U \alpha+2 c(\lambda-\alpha)) \eta(Y) \\
& \left.-\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y)\right\} \\
& -\frac{1}{\alpha} u(Y)\{(2 c \mu-U \mu) w(X)-\{U \alpha+2 c(\lambda-\alpha)\} \eta(X) \\
& \left.\quad-\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A X)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A X)\right\} .
\end{aligned}
$$

Combining this to (4.12), we have

$$
\begin{aligned}
- & 2 \mu(W \alpha) g(A Y, X) \\
+ & 2 \eta(A Y)\left\{-\left(\alpha+\frac{c}{\alpha}\right) u(A X)-\frac{c}{\alpha}(\alpha+\lambda) u(X)+\mu X \mu\right\} \\
+ & 2\left\{-\left(\alpha+\frac{c}{\alpha}\right) u(A Y)-\frac{c}{\alpha}(\alpha+\lambda) u(Y)+\mu(Y \mu)\right\} \eta(A X) \\
- & \frac{2 c \mu}{\alpha}\{u(A X) w(Y)+u(A Y) w(X)+(\lambda-\alpha)(w(X) u(Y)+w(Y) u(X))\} \\
= & -2 \alpha c(\eta(Y) u(X)+\eta(X) u(Y))-\alpha d u(U, X)(\eta(Y)+\tau w(Y)) \\
& -\alpha d u(U, Y)(\eta(X)+\tau w(X))+\alpha \mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& -\alpha(U \tau)(u(X) w(Y)+u(Y) w(X))-\mu^{2}(\eta(A X) u(Y)+\eta(A Y) u(X)) \\
& +2 \alpha \mu(w(A Y) u(X)+w(A X) u(Y))+\alpha \mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
+ & \mu^{3}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right) \\
& -u(X)\{(2 c \mu-U \mu) w(Y)-(U \alpha+2 c(\lambda-\alpha)) \eta(Y) \\
& \left.-\left(\mu^{2}+2(\lambda-\alpha) g(A W, W)\right) \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y)\right\} \\
& -u(Y)\{(2 c \mu-U \mu) w(X)-(U \alpha+2 c(\lambda-\alpha)) \eta(X) \\
\quad & \left.-\left(\mu^{2}+2(\lambda-\alpha) g(A W, W)\right) \eta(A X)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A X)\right\} .
\end{aligned}
$$

If we put $Y=W$ in (5.1) and take account of (2.1), (3.5) and (4.19), then we find

$$
\begin{aligned}
- & 2 \mu(W \alpha) w(A X)+\mu^{2}(X \mu) \\
+ & 2 \mu(W \mu) \eta(A X)-\frac{2 c \mu}{\alpha}\{u(A X)+(\lambda-\alpha) u(X)\} \\
= & -\mu d u(U, X)-\alpha d u(U, W)(\eta(X)+\tau w(X)) \\
& +\alpha \mu^{2}((X \tau)+(W \tau) w(X)) \\
& -\mu^{2}\{(W \alpha) \eta(X)+(W \mu) w(X)\} \\
& +\left(U \mu-\alpha(U \tau)-\frac{2 c}{\alpha} \mu g(A W, W)\right) u(X),
\end{aligned}
$$

or, using (4.25) and (4.26)

$$
\begin{aligned}
& 2 \mu(W \alpha) A W-2 c \mu U+\left\{\mu(\lambda-\alpha) \xi \alpha-3 \mu^{2} W \alpha-\alpha \mu^{2}(\xi \tau)\right\} \xi \\
& -\left\{\mu^{2}(W \mu)+\tau \mu^{2}(W \alpha)+2 \mu^{3}(\xi \tau)\right\} W+\mu^{2} \nabla \mu-\mu(\lambda-\alpha) \nabla \alpha \\
& -2 \mu(2 \lambda-\alpha) A U-\mu\left\{\frac{U \alpha}{\alpha}+2(\lambda-\alpha) g(A W, W)-2(\lambda-\alpha)^{2}\right\} U \\
& +\alpha \mu^{2}((W \tau) W+\nabla \tau)+\left\{U \mu-\alpha(U \tau)-\frac{2 c \mu}{\alpha} g(A W, W)\right\} U=0
\end{aligned}
$$

By the way, since $\alpha \tau=\mu$, we find

$$
\begin{equation*}
\alpha \mu \nabla \tau=\mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \tag{5.2}
\end{equation*}
$$

Using this, above equation is reduced to

$$
\begin{align*}
& \mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \\
&=(2 \lambda-\alpha) A U+\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} U \tag{5.3}\\
&-(W \alpha) A W+\{2 \mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \xi+(\lambda-\alpha)(2 W \alpha-\tau(\xi \alpha)) W .
\end{align*}
$$

If we take the inner product (5.3) with W, then we get

$$
\begin{equation*}
\mu(W \mu)=\{3(\lambda-\alpha)-g(A W, W)\} W \alpha-\tau(\lambda-\alpha) \xi \alpha . \tag{5.4}
\end{equation*}
$$

Also, taking the inner product (5.3) with U and making use of (4.7), we obtain

$$
\begin{equation*}
\frac{U \mu}{\mu}-\frac{U \alpha}{\alpha}=\left(3 \lambda-2 \alpha+\frac{c}{\alpha}\right) g(A W, W)+(\lambda-\alpha)(2 \alpha-3 \lambda)+c . \tag{5.5}
\end{equation*}
$$

On the other hand, replacing Y by W in (4.23) and using (4.3), we find

$$
\begin{aligned}
& g\left(\nabla_{X} U, W\right)+g\left(\nabla_{W} U, X\right)-\frac{\mu}{\alpha} g(\phi \nabla \alpha, X)-(\xi \tau) u(X) \\
& -\{\mu(3 \lambda-2 \alpha)-2 \mu g(A W, W)+g(\phi \nabla \alpha, W)\}(\eta(X)+\tau w(X)) \\
& +2\left(\lambda-2 \alpha-\frac{c}{\alpha}\right) g(A W, X)-2 c w(X) \\
& +\frac{\mu}{\alpha}(4 \alpha-3 \lambda+2 g(A W, W)) \eta(A X)+\mu\left(\lambda+\frac{2 c}{\alpha}\right) \eta(X)=0,
\end{aligned}
$$

or using (4.14),

$$
\begin{align*}
& g\left(\nabla_{X} U, W\right)+g(\phi \nabla \mu, X)-\frac{\lambda-\alpha}{\mu} g(\phi \nabla \alpha, X) \\
& -(\xi \tau) u(X)+2(\lambda-\alpha) w(A X) \\
& +\left\{\frac{U \alpha}{\alpha}+(\lambda-\alpha)(5 \alpha-6 \lambda+4 g(A W, W))\right\} w(X) \tag{5.6}\\
& +\left\{\frac{U \alpha}{\mu}+\mu(4 \alpha-5 \lambda+3 g(A W, W))\right\} \eta(X)=0 .
\end{align*}
$$

By the way, applying (5.3) by ϕ and making use of (2.6), (3.3) and (3.5), we have

$$
\begin{aligned}
& \mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha \\
& =-\frac{1}{\mu}(W \alpha) A U+\mu(\xi \tau) U+\mu^{2}(2 \lambda-\alpha) \xi-\mu(2 \lambda-\alpha) A W \\
& \quad-\mu\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)(3 \lambda-2 \alpha)+c\right\} W .
\end{aligned}
$$

Substituting this into (5.6), we find

$$
\begin{align*}
& g\left(\nabla_{X} U, W\right) \\
&= \frac{W \alpha}{\mu^{2}} u(A X)+\alpha w(A X) \\
&+\left\{3(\lambda-\alpha)^{2}+\frac{c}{\alpha} g(A W, W)+c-\frac{U \alpha}{\alpha}-3(\lambda-\alpha) g(A W, W)\right\} w(X) \tag{5.7}\\
&+\left\{3 \mu(\lambda-\alpha-g(A W, W))-\frac{U \alpha}{\mu}\right\} \eta(X)
\end{align*}
$$

On the other hand, (4.12) turns out, using (2.4), to be

$$
\begin{aligned}
\alpha & \left(\nabla_{X} A\right) W \\
= & \frac{c \alpha}{\mu}(\eta(X) U+2 u(X) \xi)-(W \alpha) A X \\
& +\frac{1}{\mu} \eta(A X)\left\{\mu \nabla \mu-\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U\right\} \\
& +\frac{1}{\mu}\left\{\mu(X \mu)-\left(\alpha+\frac{c}{\alpha}\right) u(A X)-\frac{c}{\alpha}(\lambda+\alpha) u(X)\right\} A \xi \\
& -\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(u(X) W+w(X) U)\} .
\end{aligned}
$$

If we apply by ϕ to this and make use of (3.3), then we find

$$
\begin{align*}
& -\alpha \phi\left(\nabla_{X} A\right) W=(W \alpha) \phi A X+c \alpha \eta(X) W-(X \mu) U \\
& +\frac{1}{\mu} \eta(A X)\left\{\left(\alpha+\frac{c}{\alpha}\right)\{(\lambda-\alpha) A \xi-\mu A W\}-\frac{c}{\alpha} \mu(\lambda+\alpha) W-\mu \phi \nabla \mu\right\} \tag{5.8}\\
& +\frac{1}{\mu}\left\{\left(\alpha+\frac{c}{\alpha}\right) u(A X)+\frac{2 c \lambda}{\alpha} u(X)\right\} U+\frac{c}{\alpha} w(X)\left(\mu^{2} \xi-\mu A W\right)
\end{align*}
$$

Now, if we put $Z=W$ in (3.12), then we find

$$
\begin{aligned}
& 2 g\left(\phi\left(\nabla_{Y} A\right) W, X\right) \\
& =2\left\{\left(w\left(A^{2} Y\right)-c w(Y)\right) \eta(X)-w(A Y) \eta(A X)\right\} \\
& \quad+d u(W, X)(\eta(Y)+\tau w(Y))+\tau d u(Y, X)+(W \tau)(w(Y) u(X)+w(X) u(Y)) \\
& \quad+\left(g\left(\nabla_{W} U, Y\right)+g\left(\nabla_{Y} U, W\right)\right)(\eta(X)+\tau w(X)) \\
& \quad+\frac{2}{\mu}\{u(A X)+(\lambda-\alpha) u(X)\} u(Y) \\
& \quad+(Y \tau) u(X)-(X \tau) u(Y)+\tau\left(u(Y) g\left(\nabla_{W} W, X\right)\right. \\
& \left.\quad+u(X) g\left(\nabla_{W} W, Y\right)\right)
\end{aligned}
$$

Using (2.1), (2.10), (3.5) and (3.8), we can write the above equation as

$$
\begin{aligned}
2 \alpha & g\left(\phi\left(\nabla_{Y} A\right) W, X\right) \\
= & \mu d u(Y, X)-2 c \eta(X) w(A Y)+2 \mu\left(c+\alpha^{2}+\alpha g(A W, W)\right) \eta(X) \eta(Y) \\
& +2\left(\alpha \mu^{2}+\mu^{2} g(A W, W)-c \alpha\right) \eta(X) w(Y) \\
& -2 \alpha \eta(A X) w(A Y)+\alpha(W \tau)(w(X) u(Y)+w(Y) u(X)) \\
& +\alpha g\left(\nabla_{W} U, X\right)(\eta(Y)+\tau w(Y)) \\
& +\alpha g\left(\nabla_{W} U, Y\right)(\eta(X)+\tau w(X))-g\left(\nabla_{X} U, W\right) \eta(A Y) \\
& +g\left(\nabla_{Y} U, W\right) \eta(A X)+\frac{2 \alpha}{\mu}\{u(A X)+(\lambda-\alpha) u(X)\} u(Y) \\
& +\alpha((Y \tau) u(X)-(X \tau) u(Y))+\mu\left(u(X) g\left(\nabla_{W} W, Y\right)+u(Y) g\left(\nabla_{W} W, X\right)\right)
\end{aligned}
$$

or using (5.8),

$$
\begin{aligned}
& \mu d u(X, Y) \\
&=(W \alpha) g((\phi A+A \phi) X, Y)+\frac{2 c}{\alpha} \mu(w(X) w(A Y)-w(Y) w(A X)) \\
&+\eta(A X) g(\phi \nabla \mu, Y)-\eta(A Y) g(\phi \nabla \mu, X) \\
&+\frac{2 c}{\mu \alpha}(u(X) u(A Y)-u(Y) u(A X))-(X \mu) u(Y)+(Y \mu) u(X) \\
& \quad+\alpha((X \tau) u(Y)-(Y \tau) u(X)) \\
& \quad+g\left(\nabla_{Y} U, W\right) \eta(A X)-g\left(\nabla_{X} U, W\right) \eta(A Y) \\
& \quad+\left\{2 c \alpha-2 c \lambda-\mu^{2}(\alpha+g(A W, W))\right\}(\eta(X) w(Y)-\eta(Y) w(X)),
\end{aligned}
$$

which together with (5.2) and (5.7) yields

$$
\begin{align*}
& \mu d u(X, Y) \\
&=(W \alpha) g((\phi A+A \phi) X, Y)+\frac{2 c \mu}{\alpha}(w(X) w(A Y)-w(Y) w(A X)) \\
&+\frac{W \alpha}{\mu^{2}}(\eta(A X) u(A Y)-\eta(A Y) u(A X)) \\
&+\eta(A X) g(\phi \nabla \mu, Y)-\eta(A Y) g(\phi \nabla \mu, X) \tag{5.9}\\
&+\alpha(\eta(A X) w(A Y)-\eta(A Y) w(A X)) \\
&+\frac{2 c}{\mu \alpha}(u(X) u(A Y)-u(Y) u(A X))+\frac{\mu}{\alpha}((X \alpha) u(Y)-(Y \alpha) u(X)) \\
&+\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}-c \alpha+2 c \lambda\right\}(\eta(X) w(Y)-\eta(Y) w(X)) .
\end{align*}
$$

Putting $X=\phi e_{i}$ and $Y=e_{i}$ in this and summing up for $i=1,2, \cdots, n$, we obtain

$$
\mu \sum_{i=0}^{2 n} d u\left(\phi e_{i}, e_{i}\right)=(h-\alpha-g(A W, W)) W \alpha-\mu(W \mu),
$$

where we have used $(2.6)-(2.8),(3.5)$ and (4.7). Taking the trace of (2.12), we obtain

$$
\sum_{i=0}^{2 n} g\left(\phi \nabla_{e_{i}} U, e_{i}\right)=\xi \alpha-\xi h .
$$

Thus, it follows that

$$
\begin{equation*}
\mu(\xi h-\xi \alpha)=\mu(W \mu)+(g(A W, W)+\alpha-h) W \alpha \tag{5.10}
\end{equation*}
$$

which together with (4.16) gives

$$
\begin{equation*}
\mu^{2}(\operatorname{div} W)=(g(A W, W)+\alpha-h) W \alpha . \tag{5.11}
\end{equation*}
$$

We notice here that
Remark 5.1. If $A U=\sigma U$ for some function σ on Ω, then $A W \in \operatorname{span}\{\xi, W\}$ on Ω, where $\operatorname{span}\{\xi, W\}$ is a linear subspace spanned by ξ and W.

In fact, because of the hypothesis $A U=\sigma U$, (3.5) reformed as

$$
\mu \phi A W=(\sigma+\lambda-\alpha) U
$$

which implies that $A W=\mu \xi+(\sigma+\lambda-\alpha) W \in \operatorname{span}\{\xi, W\}$.
Now, we prepare the following lemma for later use.
Lemma 5.2. Let M be a real hypersurface of $M_{n}(c), c \neq 0$ which satisfies $R_{\xi} \phi=\phi R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. If $A W \in \operatorname{span}\{\xi, W\}$, then $\Omega=\emptyset$.

Proof. Since (3.5) and $A W=\mu \xi+g(A W, W) W$, we have

$$
\begin{equation*}
A U=(g(A W, W)+\alpha-\lambda) U \tag{5.12}
\end{equation*}
$$

From (4.2) we also have

$$
g(A W, W)(\alpha A U+c U)=0
$$

Now, suppose that $g(A W, W) \neq 0$ on Ω. Then we have $\alpha A U+c U=0$ on this subset, which together with (5.12) gives

$$
\begin{equation*}
\mu^{2}=\alpha g(A W, W)+c \tag{5.13}
\end{equation*}
$$

From this and (2.16) we have $R_{\xi} W=0$ and consequently $R_{\xi} A \xi=0$ on the subset because of (2.6) and (2.16). If we take (3.1) by R_{ξ} and using $R_{\xi} U=0$ and $R_{\xi} A \xi=0$, we obtain $R_{\xi}(A \phi-\phi A)=0$, that is, $R_{\xi}\left(\mathcal{L}_{\xi} g\right)=0$ on the subset, where \mathcal{L}_{ξ} denotes the operator of the Lie derivative with respect to ξ. Owing to Theorem 5.1 of [5], it is verified that $A \xi=\alpha \xi$, a contradiction. Therefore we have the following

$$
\begin{equation*}
g(A W, W)=0 \tag{5.14}
\end{equation*}
$$

on Ω. So we have

$$
\begin{equation*}
A W=\mu \xi \tag{5.15}
\end{equation*}
$$

From (5.12) and (5.14), we get

$$
\begin{equation*}
A U=(\alpha-\lambda) U \tag{5.16}
\end{equation*}
$$

Differentiating (5.15) covariantly, we find

$$
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi
$$

Taking the inner product with W and making use of (2.11) and (5.16), we have

$$
g\left(\left(\nabla_{X} A\right) W, W\right)=2(\lambda-\alpha) u(X)
$$

Using (2.4) it reformed as

$$
\begin{equation*}
\left(\nabla_{W} A\right) W=2(\lambda-\alpha) U \tag{5.17}
\end{equation*}
$$

On the other hand, (4.13) is reduced, using (5.16) and (5.17), to

$$
\begin{equation*}
\left(\mu^{2}+2 c\right) U=-\mu(W \alpha) \xi+(W \mu) A \xi+\mu \nabla \mu \tag{5.18}
\end{equation*}
$$

Taking the inner product with W, we have

$$
\begin{equation*}
W \mu=0 \tag{5.19}
\end{equation*}
$$

Hence, it follows from (5.18) that

$$
\begin{equation*}
\mu \nabla \mu=\mu(W \alpha) \xi+\left(\mu^{2}+2 c\right) U \tag{5.20}
\end{equation*}
$$

which shows that for any vector fields X

$$
\mu(X \mu)=\mu(W \alpha) \eta(X)+\left(\mu^{2}+2 c\right) u(X)
$$

Differentiating this covariantly and using (2.1), we have

$$
\begin{aligned}
& (Y \mu)(X \mu)+\mu(Y(X \mu)) \\
& =Y(\mu(W \alpha)) \eta(X)+\mu(W \alpha) g(\phi A Y, X) \\
& \quad+\left(2 \mu(W \alpha) \eta(Y)+2\left(\mu^{2}+2 c\right) u(Y)\right) u(X)+\left(\mu^{2}+2 c\right) g\left(\nabla_{Y} U, X\right) \\
& \quad+\left\{\mu(W \alpha) \eta\left(\nabla_{Y} X\right)+\left(\mu^{2}+2 c\right) u\left(\nabla_{Y} U\right)\right\}
\end{aligned}
$$

Taking the skew-symmtric part of this, we find

$$
\begin{align*}
& Y(\mu(W \alpha)) \eta(X)-X(\mu(W \alpha)) \eta(Y) \\
& +(\mu(W \alpha)) g((\phi A+A \phi) Y, X) \\
& +2 \mu(W \alpha)(\eta(Y) u(X)-\eta(X) u(Y)) \tag{5.21}\\
& +\left(\mu^{2}+2 c\right)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0 .
\end{align*}
$$

Replacing Y by ξ in this, and using (2.10) and (5.17), we have

$$
\begin{aligned}
X(\mu(W \alpha))-2 \mu(W \alpha) u(X)= & \xi(\mu(W \alpha)) \eta(X)+(\mu(W \alpha)) u(X) \\
& +\left(\mu^{2}+c\right)\left(g\left(\nabla_{\xi} U, X\right)-\mu^{2} \eta(X)\right) .
\end{aligned}
$$

Substituting this into (5.21), we obtain

$$
\begin{aligned}
& \mu(W \alpha)(u(Y) \eta(X)-u(X) \eta(Y)) \\
& +\left(\mu^{2}+2 c\right)\left(g\left(\nabla_{\xi} U, Y\right) \eta(X)-g\left(\nabla_{\xi} U, X\right) \eta(Y)\right) \\
& +\mu(W \alpha) g((\phi A+A \phi) Y, X) \\
& +\left(\mu^{2}+2 c\right)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
\end{aligned}
$$

Putting $Y=U$ in this, and using (2.8), (3.3), (4.11), (5.15) and (5.16), we obtain

$$
\begin{align*}
& \left(\mu^{2}+2 c\right)\left(g\left(\nabla_{U} U, X\right)-\mu(X \mu)\right) \\
& +\mu\left(\mu^{2}+2 c\right)(W \alpha) \eta(X)+\mu^{2}(\lambda-\alpha)(W \alpha) w(X)=0 \tag{5.22}
\end{align*}
$$

On the other hand, putting $Y=U$ in (5.9) and making use of (5.14), (5.15) and (5.19), we have

$$
g\left(\nabla_{U} U, X\right)-\mu(X \mu)=2(\lambda-\alpha)(W \alpha) w(X)+\frac{U \alpha}{\alpha} u(X)-(\lambda-\alpha) X \alpha
$$

Combining this to (5.22), we have

$$
\begin{aligned}
& \left(\mu^{2}+2 c\right)\left\{2(\lambda-\alpha)(W \alpha) w(X)+\frac{U \alpha}{\alpha} u(X)-(\lambda-\alpha) X \alpha\right\} \\
& +\mu\left(\mu^{2}+2 c\right)(W \alpha) \eta(X)-\mu^{2}(\lambda-\alpha)(W \alpha) w(X)=0
\end{aligned}
$$

If we put $X=W$ in this, then we have

$$
\left(\mu^{2}+2 c\right)(\lambda-\alpha) W \alpha=\left(\mu^{2}+4 c\right)(\lambda-\alpha) W \alpha
$$

which, together with $\lambda \neq \alpha$, shows that

$$
\begin{equation*}
W \alpha=0 \tag{5.23}
\end{equation*}
$$

Thus, (5.20) becomes

$$
\begin{equation*}
\mu \nabla \mu=\left(\mu^{2}+2 c\right) U \tag{5.24}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\phi \nabla \mu=-\left(\mu^{2}+2 c\right) W \tag{5.25}
\end{equation*}
$$

Using (5.23), we can write (5.21) as

$$
\left(\mu^{2}+2 c\right)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
$$

Now, suppose that $\mu^{2}+2 c \neq 0$. Then we have $g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)=0$. Using (5.14)-(5.16), (5.20), (5.23) and (5.25), we can write (5.9) as

$$
\left(\mu^{2}+c\right)(w(X) \eta(Y)-w(Y) \eta(X))=0
$$

which implies $\mu^{2}+c=0$. So μ is constant. Thus, (5.23) becomes $\mu^{2}+2 c=0$, a contradiction. Therefore, we see that $\mu^{2}+2 c=0$.

Accordingly we see that μ is constant, which together with (5.4) yields $\xi \alpha=0$. Hence (5.3) is reduced to

$$
\begin{equation*}
\mu^{2} \nabla \alpha=\left\{\mu^{2}(3 \lambda-2 \alpha)-c \alpha\right\} U \tag{5.26}
\end{equation*}
$$

Taking the inner product this to X and differentiating covariantly, we find

$$
\begin{aligned}
\mu^{2}(Y(X \alpha))= & \left\{\mu^{2}(3 Y \lambda-2 Y \alpha)-c \alpha\right\} u(X) \\
& +\left\{\mu^{2}(3 \lambda-2 \alpha)-c \alpha\right\}\left(g\left(\nabla_{Y} U, X\right)+g\left(U, \nabla_{Y} X\right)\right)
\end{aligned}
$$

The skew-symmetric part of this is given by

$$
\begin{aligned}
& 3 \mu^{2}((Y \lambda) u(X)-(X \lambda) u(Y))+\left(2 \mu^{2}+c\right)((X \alpha) u(Y)-(Y \alpha) u(X)) \\
& +\left\{\mu^{2}(3 \lambda-2 \alpha)-c \alpha\right\}\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
\end{aligned}
$$

which implies that $\nabla \lambda=\chi U$ for some function χ, where we have used (4.24) and (5.26). Thus it follows that

$$
\left\{\mu^{2}(3 \lambda-\alpha)-c \alpha\right\}\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
$$

If $g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)=0$, then similarly as above we have a contradiction. Thus we have $\mu^{2}(3 \lambda-2 \alpha)-c \alpha=0$, which together with $\mu^{2}+2 c=0$ gives $2 \lambda-\alpha=0$. i.e. $2 \mu^{2}+\alpha^{2}=0$, a contradiction. Therefore Lemma 5.2 is proved.

Lemma 5.3.

$$
\alpha^{2} \phi(\nabla \lambda-\nabla h)=-4 \mu\left(\mu^{2}+c\right)(A W-\mu \xi)+\frac{\alpha}{\mu}(h-\lambda)(W \alpha) U+f W
$$

for some function f on Ω.
Proof. Putting $X=Y=e_{i}$ in (3.12), summing up for $i=0,1, \cdots, 2 n$ and using (2.1) and (2.4), we find

$$
\begin{aligned}
& \operatorname{Tr}\left(\nabla_{\phi Z} A\right)-2 c(n-1) \eta(Z)+\left(\operatorname{Tr} A^{2}\right) \eta(Z)-h \eta(A Z) \\
& +g\left(\nabla_{\xi} U, Z\right)-g\left(\nabla_{Z} U, \xi\right)+\tau\left(g\left(\nabla_{W} U, Z\right)+g\left(\nabla_{U} W, Z\right)\right) \\
& +(\operatorname{div} U)(\eta(Z)+\tau w(Z))+g((\phi A+A \phi) U, Z) \\
& +(W \tau) u(Z)+(U \tau) w(Z)+\tau(\operatorname{div} W) u(Z)=0
\end{aligned}
$$

or using (2.10), (3.3), (3.7) and (4.24)

$$
\begin{align*}
& \phi \nabla \alpha-\phi \nabla h+\frac{\mu}{\alpha}\left(\nabla_{W} U+\nabla_{U} W\right)-4 \mu A W+(W \tau+\tau(\operatorname{div} W)) U \\
& +(U \tau+\tau(\operatorname{div} U)+\mu(4 \lambda-3 \alpha-h)) W \tag{5.27}\\
& +(\lambda-\alpha)(\lambda+3 \alpha) \xi=0
\end{align*}
$$

On the other hand, combining (4.20) to (5.8) and making use of (5.7), we find

$$
\begin{aligned}
\nabla_{U} W= & \frac{1}{\mu}\{\mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha\} \\
& -(\xi \tau) U+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) A W \\
& +\left\{(\lambda-\alpha)(2 \alpha-3 \lambda)+c-\left(\lambda+\frac{c}{\alpha}\right) g(A W, W)\right\} W \\
& +\mu\left\{g(A W, W)+3 \alpha-5 \lambda-\frac{2 c}{\alpha}\right\} \xi
\end{aligned}
$$

Substituting this and (4.14) into (5.27), we find

$$
\begin{align*}
& \alpha \phi(\nabla \alpha-\nabla h)+2 \mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha \\
& =4 \mu\left(\alpha-\lambda-\frac{c}{\alpha}\right) A W+(\mu(\xi \tau)-\alpha(W \tau)-\mu(\operatorname{div} W)) U \\
& \quad-4(\lambda-\alpha)\left(\mu^{2}+c\right) \xi-(\alpha(U \tau)+\mu(\operatorname{div} W)) W \tag{5.28}\\
& \quad-\mu\{3 c+(\lambda-\alpha)(\alpha-3 \lambda) \\
& \left.\quad-\left(\lambda+\frac{c}{\alpha}\right) g(A W, W)+4 \alpha \lambda-3 \alpha^{2}-h \alpha\right\} W
\end{align*}
$$

From (4.11), (4.16) and (5.2) we have

$$
\begin{aligned}
& \alpha \mu(\mu(\xi \tau)-\alpha(W \tau)-\mu(\operatorname{div} W)) \\
& \quad=2 \mu^{2}(W \alpha)-\mu(\lambda-2 \alpha) \xi \alpha-\alpha \mu(\xi h)
\end{aligned}
$$

By the way, using (5.4) and (5.10) we have

$$
\mu(\lambda-2 \alpha) \xi \alpha+\alpha \mu(\xi h)=\alpha(3 \lambda-2 \alpha-h) W \alpha
$$

Thus, we have

$$
\begin{equation*}
\alpha \mu(\mu(\xi \tau)-\alpha(W \tau)-\mu(\operatorname{div} W))=\alpha(h-\lambda) W \alpha \tag{5.29}
\end{equation*}
$$

Differentiating (3.2) covariantly, we find

$$
\begin{equation*}
2 \mu \nabla \mu=(\lambda-2 \alpha) \nabla \alpha+\alpha \nabla \lambda \tag{5.30}
\end{equation*}
$$

Using this and (5.29), the equation (5.28) reformed as

$$
\alpha^{2} \phi(\nabla \lambda-\nabla h)=-4 \mu\left(\mu^{2}+c\right)(A W-\mu \xi)+\frac{\alpha}{\mu}(h-\lambda)(W \alpha) U+f W
$$

where we have put

$$
\begin{aligned}
f= & \alpha \mu\left\{h \alpha+4 \alpha^{2}-8 \alpha \lambda+3 \lambda^{2}-3 c\right. \\
& \left.+\left(\lambda+\frac{c}{\alpha}\right) g(A W, W)-\operatorname{div} U-\frac{\alpha}{\mu}(U \tau)\right\} .
\end{aligned}
$$

This completes the proof of Lemma 5.3.

6. Lemmas

We will continue our discussions under the same hypotheses as those in Section 4. Further we assume that $\operatorname{Tr} R_{\xi}$ is constant, that is, $g(S \xi, \xi)$ is constant. Then, from (2.5) we see that $\beta-h \alpha$ is constant, i.e.

$$
\begin{equation*}
\alpha(h-\lambda)=C \tag{6.1}
\end{equation*}
$$

where C is some constant. Differentiating this covariantly, we have

$$
\begin{equation*}
(\lambda-h) \nabla \alpha+\alpha(\nabla \lambda-\nabla h)=0 . \tag{6.2}
\end{equation*}
$$

So we have $\alpha \phi(\nabla \lambda-\nabla h)=(h-\lambda) \phi \nabla \alpha$. Thus, from Lemma 5.3 we find

$$
\frac{\alpha(h-\lambda)}{\mu} \phi(\nabla \alpha-(W \alpha) W)=-4\left(\mu^{2}+c\right)(A W-\mu \xi)+\frac{\alpha}{\mu} f W,
$$

which tells us that

$$
\frac{\alpha(h-\lambda)}{\mu^{2}}(U \alpha)=4\left(\mu^{2}+c\right) g(A W, W)-\frac{\alpha}{\mu} f .
$$

Combining the last two equations, it follows that

$$
\begin{align*}
& \frac{\alpha(h-\lambda)}{\mu} \phi\left(\nabla \alpha-(W \alpha) W-\frac{U \alpha}{\mu^{2}} U\right) \tag{6.3}\\
& =-4\left(\mu^{2}+c\right)(A W-\mu \xi-g(A W, W) W)
\end{align*}
$$

Applying this by ϕ and using (3.5), we find

$$
\begin{align*}
& \alpha(h-\lambda)\left(\nabla \alpha-(\xi \alpha) \xi-(W \alpha) W-\frac{U \alpha}{\mu^{2}} U\right) \tag{6.4}\\
& =4\left(\mu^{2}+c\right)\{A U+(\lambda-\alpha) U-g(A W, W) U\}
\end{align*}
$$

Taking the inner product with $A W$ to this, and using (4.6), (5.4) and $\alpha \neq 0$, we see

$$
\begin{equation*}
(h-\lambda)(g(A W, \nabla \alpha)-\mu(\xi \alpha)-g(A W, W)(W \alpha))=0 . \tag{6.5}
\end{equation*}
$$

First of all, we prove the following:
Lemma 6.1. $h-\lambda \neq 0$ on Ω.
Proof. If not, then we have from (6.4)

$$
\left(\mu^{2}+c\right)\{A U-(g(A W, W)+\alpha-\lambda) U\}=0
$$

on this subset. Because of Remark 5.1 and Lemma 5.2, it is verified that $\mu^{2}+c=0$ on the set and hence μ is constant. Accordingly we see that $W \alpha=0$ because of (4.11) and hence $\xi \alpha=0$ and $\xi \tau=0$ by virtue of (5.2) and (5.4). Thus, (5.3) reformed as

$$
(\lambda-\alpha) \nabla \alpha+(2 \lambda-\alpha) A U+\left\{c-(\lambda-\alpha)^{2}\right\} U=0
$$

which together with $\mu^{2}+c=0$ implies that

$$
\begin{equation*}
X \alpha=\lambda u(X)+\varepsilon g(A U, X) \tag{6.6}
\end{equation*}
$$

for any vector field X, where we have put $c \varepsilon=\alpha^{2}-2 c$. Differentiating (6.6) covariantly with respect to a vector field Y and taking skew-symmetric part, we get

$$
\begin{aligned}
& (Y \lambda) u(X)-(X \lambda) u(Y)+\lambda\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right) \\
& +(Y \varepsilon) u(A X)-(X \varepsilon) u(A Y) \\
& +\varepsilon\left\{c \mu(\eta(Y) w(X)-\eta(X) w(Y))+g\left(A \nabla_{Y} U, X\right)-g\left(A \nabla_{X} U, Y\right)\right\}=0 .
\end{aligned}
$$

where we have used the Codazzi equation (2.4). Since $\xi \alpha=0$ and (6.1), by replacing X by ξ in this, we get

$$
\begin{aligned}
& -\lambda\left(g\left(\nabla_{\xi} U, Y\right)+g\left(\nabla_{Y} \xi, U\right)\right) \\
& +\varepsilon\left(g\left(\nabla_{Y} U, \alpha \xi+\mu W\right)-c \mu w(Y)-g\left(\nabla_{\xi} U, A Y\right)\right)=0
\end{aligned}
$$

where we have used (2.6), which together with (2.10) and (5.9) implies that

$$
\begin{equation*}
\varepsilon A \nabla_{\xi} U+\lambda \nabla_{\xi} U+\mu \lambda A W \in \operatorname{span}\{\xi, W\} \tag{6.7}
\end{equation*}
$$

On the other hand, we can write (3.7) as

$$
\nabla_{\xi} U=-\mu(\varepsilon+3) A W+(\lambda-\alpha)(\varepsilon+2) A \xi
$$

where we have used (3.3) and (6.6), which together with (2.6), (4.3) and the fact that $\mu^{2}+c=0$ yields

$$
\begin{aligned}
A \nabla_{\xi} U= & -\mu(\lambda-\alpha) A W+\{c-(\lambda-\alpha)(\varepsilon+3) g(A W, W)\} A \xi \\
& -c(\lambda-\alpha)(\varepsilon+3) \xi
\end{aligned}
$$

Combining the last three equations, it is seen that

$$
\{(2 \lambda-\alpha) \varepsilon+2 \lambda\} A W \in \operatorname{span}\{\xi, W\}
$$

which shows that $(2 \lambda-\alpha) \varepsilon+2 \lambda=0$ by Lemma 5.2. So we have $(2 \lambda-\alpha)\left(\alpha^{2}-\right.$ $2 c)+2 c \lambda=0$, a contradiction because of $\mu^{2}+c=0$. This completes the proof.
If we combine (6.2) to (5.30), then we have

$$
\begin{equation*}
2 \mu \nabla \mu=(h-2 \alpha) \nabla \alpha+\alpha \nabla h . \tag{6.8}
\end{equation*}
$$

If we apply this by ξ, then we find

$$
\begin{equation*}
2 \mu(\xi \mu)=(h-2 \alpha) \xi \alpha+\alpha(\xi h) \tag{6.9}
\end{equation*}
$$

From (4.11), (5.6) and (5.12) we get $(h-\lambda)(\mu(\xi \alpha)-\alpha(W \alpha))=0$ and hence

$$
\begin{equation*}
\mu(\xi \alpha)=\alpha(W \alpha) \tag{6.10}
\end{equation*}
$$

by virtue of Lemma 6.1, which together with (6.9) yields

$$
\begin{equation*}
\mu(\xi h)=(2 \lambda-h) W \alpha \tag{6.11}
\end{equation*}
$$

From (5.2) and (6.10) we have $\xi \tau=0$. Thus, using (6.8) and (6.10) we verify from (5.3)

$$
\begin{align*}
& \frac{1}{2}(h \nabla \alpha+\alpha \nabla h)-\lambda \nabla \alpha+(W \alpha) A W \\
& =(2 \lambda-\alpha) A U+\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} U \tag{6.12}\\
& \quad+(W \alpha)\{\mu \xi+(\lambda-\alpha) W\} .
\end{align*}
$$

Because of Lemma 6.1, (6.5) implies that

$$
\begin{equation*}
g(A W, \nabla \alpha)=(\alpha+g(A W, W)) W \alpha \tag{6.13}
\end{equation*}
$$

with the aid of (6.10). Applying (5.3) by $A W$ and making use of (4.3), (6.10), (6.13) and $\xi \tau=0$, we find

$$
\begin{aligned}
& \mu g(A W, \nabla \mu)-(\lambda-\alpha)(\alpha+g(A W, W)) W \alpha+g\left(A^{2} W, W\right) W \alpha \\
& =\left\{\mu^{2}+(\lambda-\alpha) g(A W, W)\right\} W \alpha
\end{aligned}
$$

which together with (4.5) gives

$$
\begin{equation*}
\mu \alpha g(A W, \nabla \mu)=\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}\right\} W \alpha \tag{6.14}
\end{equation*}
$$

In the next place, we will prove that
Lemma 6.2. $\xi \alpha=W \alpha=W \mu=\xi h=\xi \lambda=W \lambda=0$ and $\xi(g(A W, W))=0$ on Ω.
Proof. Differentiating (4.4) covariantly, we get
(6.15) $\quad g\left(A^{2} W, W\right)(X \alpha)+\alpha\left(X\left(g\left(A^{2} W, W\right)\right)\right)$

$$
=2 \mu g(A W, W)(X \mu)+\left(\mu^{2}-c\right)(X(g(A W, W)))+\mu^{2}(X \alpha)+2 \mu \alpha(X \mu)
$$

Replacing X by ξ in this, and using (4.11) and (6.10), we find

$$
\begin{align*}
\alpha\left(\xi\left(g\left(A^{2} W, W\right)\right)\right)= & \frac{\alpha}{\mu}\left(\mu^{2}-g\left(A^{2} W, W\right)\right) W \alpha+2 \mu(\alpha+g(A W, W)) W \alpha \tag{6.16}\\
& +\left(\mu^{2}-c\right)(\xi(g(A W, W))) .
\end{align*}
$$

By the way, using (4.10), (4.18), (6.10) and (6.13), we verify that $\xi(g(A W, W))$ $=W \mu$, which together with (5.4) and (6.10) yields

$$
\xi(g(A W, W))=\frac{1}{\mu}\{2(\lambda-\alpha)-g(A W, W)\} W \alpha
$$

Substituting this and (4.5) into (6.14), we find

$$
\begin{equation*}
\frac{\alpha}{2} \xi\left(g\left(A^{2} W, W\right)\right)=\left\{\frac{c}{\mu} g(A W, W)+\mu \alpha+\frac{\mu}{\alpha}\left(\mu^{2}-c\right)\right\} W \alpha \tag{6.17}
\end{equation*}
$$

On the other hand, we have

$$
\frac{1}{2}\left(X\left(g\left(A^{2} W, W\right)\right)\right)=g\left(\left(\nabla_{X} A\right) W, A W\right)+g\left(A^{2} W, \nabla_{X} W\right)
$$

which implies

$$
\begin{align*}
\frac{1}{2} \alpha\left(X\left(g\left(A^{2} W, W\right)\right)\right)= & \alpha g\left(\left(\nabla_{W} A\right) X, A W\right)+2 c \alpha u(X)-c g\left(A W, \nabla_{X} W\right) \tag{6.18}\\
& +c u(A X)+\alpha(\alpha+g(A W, W)) u(A X)
\end{align*}
$$

where we have used (2.6), (2.11) and (4.3).
By the way, putting $X=A W$ in (4.12) and making use of (2.6) and (6.14), we obtain

$$
\begin{aligned}
& \alpha\left(\nabla_{W} A\right) A W \\
&=-(W \alpha) A^{2} W \\
&+(\alpha+g(A W, W))\left\{-\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U+\mu \nabla \mu\right\} \\
&+\frac{1}{\mu \alpha}\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}\right\}(W \alpha) A \xi \\
&-\frac{c}{\alpha} g(A W, W)\{A U+(\lambda-\alpha) U\},
\end{aligned}
$$

which implies

$$
\alpha g\left(\left(\nabla_{W} A\right) A W, \xi\right)=\frac{1}{\mu}\left\{\alpha \mu^{2}+\left(\mu^{2}+c\right) g(A W, W)\right\}
$$

because of (2.6) and (4.11). If we replace X by ξ in (6.16) and make use of (4.11), (4.18) and (6.17), then we obtain

$$
\left(\mu^{2}-c-\alpha g(A W, W)\right)(W \alpha)=0
$$

because of $\lambda-\alpha \neq 0$.
Now, suppose that $W \alpha \neq 0$ on Ω. Then since $\lambda \neq \alpha$, we have $\alpha g(A W, W)=$ $\mu^{2}-c$, which together with (3.2) and (4.7) gives $\alpha g(A U, U)=-c \mu^{2}$. From this and (4.6) we verify that $\alpha^{2} g\left(A^{2} U, U\right)=c^{2} \mu^{2}$. Using the last two equations it is seen that $\|\alpha A U+c U\|^{2}=0$ and hence $\alpha A U+c U=0$. Thus, (3.5) is reduced to $\mu \phi A W=(\lambda-\alpha-c / \alpha) U$, which shows that $A W=\mu \xi+g(A W, W) W$ on this subset. According to Lemma 5.2, we have $\Omega=\emptyset$, and hence $W \alpha=0$ on Ω. Thus, it is clear that $W \mu=0, \xi \alpha=0, \xi h=0$ and $\xi \lambda=0$, where we have used (4.11), (5.6), (6.2), (6.9), (6.10) and (6.11). Since (3.2), $W \alpha=0$ and $W \mu=0$, we have $W \lambda=0$. Hence Lemma 6.2 is proved.

Because of Lemma 6.2, we can write (6.4) as

$$
\begin{aligned}
& \alpha(h-\lambda)\left(\nabla \alpha-\frac{U \alpha}{\mu^{2}} U\right) \\
& =4\left(\mu^{2}+c\right)\{A U-(\lambda-\alpha-g(A W, W)) U\},
\end{aligned}
$$

which tells us that

$$
\begin{equation*}
\frac{1}{4} \alpha(h-\lambda) \nabla \alpha=\left(\mu^{2}+c\right) A U+\theta U \tag{6.19}
\end{equation*}
$$

where the function θ is defined by

$$
\mu^{2} \theta=\frac{\alpha(h-\lambda)}{4}(U \alpha)-\left(\mu^{2}+c\right) g(A U, U) .
$$

We also have from (5.4)

$$
\begin{equation*}
\mu \nabla \mu-(\lambda-\alpha) \nabla \alpha=(2 \lambda-\alpha) A U+\rho U, \tag{6.20}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\rho=\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c . \tag{6.21}
\end{equation*}
$$

Remark 6.3. $\mu^{2}+c \neq 0$ on Ω.
If not, then we have $\mu^{2}+c=0$ and hence μ is constant on this subset. So (6.19) and (6.20) are reduced respectively to

$$
\begin{aligned}
& \mu^{2} \nabla \alpha=(U \alpha) U \\
& (\lambda-\alpha) \nabla \alpha+(2 \lambda-\alpha) A U+\left\{c-(\lambda-\alpha)^{2}\right\} U=0
\end{aligned}
$$

because of Lemma 5.2. Combining these two equations, we obtain

$$
(2 \lambda-\alpha) A U=\left\{(\lambda-\alpha)^{2}-c-\frac{U \alpha}{\alpha}\right\} U .
$$

Suppose that $2 \lambda-\alpha=0$ on this subset. Then, the equation $\mu^{2}+c=0$ becomes $\alpha^{2}-2 c=0$, a contradiction. Thus we have $2 \lambda-\alpha \neq 0$. Owing to Remark 5.1 and Lemma 5.2, above equation produces a contradiction. Hence $\mu^{2}+c \neq 0$ on Ω is proved.
Lemma 6.4. $(2 \lambda-\alpha) \theta=\left(\mu^{2}+c\right) \rho$ on Ω.
Proof. From (6.17) and (6.18) we have

$$
\begin{aligned}
& \frac{1}{4} \alpha(h-\lambda)(2 \lambda-\alpha) \nabla \alpha-\left(\mu^{2}+c\right)\left\{\frac{1}{2} \nabla \mu^{2}-(\lambda-\alpha) \nabla \alpha\right\} \\
& =\left\{(2 \lambda-\alpha) \theta-\left(\mu^{2}+c\right) \rho\right\} U .
\end{aligned}
$$

Using the same method as that used to derive (6.7) from (6.6), we can deduce from this that

$$
(2 \lambda-\alpha)(\xi \theta) U+\left\{(2 \lambda-\alpha) \theta-\left(\mu^{2}+c\right) \rho\right\}\left(\nabla_{\xi} U+\mu A W\right)=0
$$

where, we have used (2.10), (6.1) and Lemma 6.2. If we take the inner product with U to this and make use of $\xi \mu=0$, then we get $(2 \lambda-\alpha) \xi \theta=0$ and hence

$$
\left\{(2 \lambda-\alpha) \theta-\left(\mu^{2}+c\right) \rho\right\}\left(\nabla_{\xi} U+\mu A W\right)=0
$$

If $(2 \lambda-\alpha) \theta-\left(\mu^{2}+c\right) \rho \neq 0$ on Ω, then we have

$$
\nabla_{\xi} U+\mu A W=0
$$

We discuss our arguments on such a place. Using (3.7), the last equation can be written as

$$
\phi \nabla \alpha=2 \mu A W+(2 \alpha-3 \lambda) A \xi+\alpha \lambda \xi
$$

Applying this by ϕ and taking account of (3.5) and Lemma 6.2, we obtain

$$
\begin{equation*}
\nabla \alpha=-2 A U+\lambda U \tag{6.22}
\end{equation*}
$$

Combining this to (6.19), we obtain

$$
\left\{\mu^{2}+c+\frac{1}{2} \alpha(h-\lambda)\right\} A U=\left\{\frac{1}{4} \alpha \lambda(h-\lambda)-\theta\right\} U .
$$

Because of Remark 5.1 and Lemma 5.2, we conclude that $\mu^{2}+c+(1 / 2) \alpha(h-\lambda)=0$. Hence it follows from (6.1) that μ is constant. Thus, (6.20) reformed as

$$
(\lambda-\alpha) \nabla \alpha=(\alpha-2 \lambda) A U-\rho U,
$$

which together with (6.22) implies that $\alpha A U=\{\lambda(\alpha-\lambda)-\rho\} U$. Therefore we verify that $(2 \lambda-\alpha) \theta-\rho\left(\mu^{2}+c\right)=0$ by virtue of Remark 5.1 and Lemma 5.2. This completes the proof.
Lemma 6.5 Let $\operatorname{span}\{\xi, W\}$ be the linear subspace spanned by ξ and W. Then there exists $P \in \operatorname{span}\{\xi, W\}$ such that

$$
\begin{aligned}
& g\left(A W, \nabla_{X} U\right) \\
& =\frac{c}{\alpha} w\left(A^{2} X\right)-\left\{\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right\} w(A X)+g(P, X) .
\end{aligned}
$$

Proof. Putting $Y=A W$ in (5.9) and using (3.6), (4.3), (6.13) and Lemma 6.2, we find

$$
\begin{aligned}
& \mu d u(X, A W) \\
& =\frac{2 c}{\alpha} \mu\left\{g\left(A^{2} W, W\right) w(X)-g(A W, W) w(A X)\right\} \\
& \quad+\eta(A X) g(\phi \nabla \mu, A W)-\mu(\alpha+g(A W, W)) g(\phi \nabla \mu, X) \\
& \quad+\alpha\left\{g\left(A^{2} W, W\right) \eta(A X)-\mu(\alpha+g(A W, W)) w(A X)\right\} \\
& \quad+\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}-c \alpha+2 c \lambda\right\}(g(A W, W) \eta(X)-\mu w(X))
\end{aligned}
$$

which enables us to obtain

$$
\begin{aligned}
& g\left(A W, \nabla_{X} U\right)-g\left(\nabla_{A W} U, X\right) \\
& =-\alpha\left(\alpha+g(A W, W)+\frac{2 c}{\alpha^{2}} g(A W, W)\right) w(A X) \\
& \quad-(\alpha+g(A W, W)) g(\phi \nabla \mu, X)+g\left(P_{1}, X\right)
\end{aligned}
$$

for some $P_{1} \in \operatorname{span}\{\xi, W\}$. If we replace X by $A W$ in (4.23) and make use of (3.5), (4.3), (6.14) and Lemma 6.2, then we get

$$
\begin{aligned}
g(& \left.\nabla_{X} U, A W\right)+g\left(\nabla_{A W} U, X\right) \\
= & 2 c w(A X)+2 \alpha w\left(A^{2} X\right)-2 w\left(A^{3} X\right) \\
& +\left(\mu+\frac{\mu}{\alpha} g(A W, W)\right)\{(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X) \\
& -\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X)\} \\
& +\{\mu(3 \lambda-2 \alpha)(\alpha+g(A W, W))-2 \mu g(A W, W)-\alpha \lambda \mu \\
& \left.-\frac{1}{\mu} g(A U+(\lambda-\alpha) U, \nabla \alpha)\right\}(\eta(X)+\tau w(X))-2 c \mu \eta(X),
\end{aligned}
$$

which shows that

$$
\begin{aligned}
& g\left(\nabla_{X} U, A W\right)+g\left(\nabla_{A W} U, X\right) \\
& =-2 w\left(A^{3} X\right)+2 \alpha w\left(A^{2} X\right)+2 c w(A X) \\
& \quad-2(\lambda-\alpha)(\alpha+g(A W, W)) w(A X) \\
& \quad+\frac{\mu}{\alpha}(\alpha+g(A W, W)) g(\phi \nabla \alpha, X)+g\left(P_{2}, X\right),
\end{aligned}
$$

for some $P_{2} \in \operatorname{span}\{\xi, W\}$. Adding to the last two equations, we obtain

$$
\begin{aligned}
2 g\left(A W, \nabla_{X} U\right)= & -2 w\left(A^{3} X\right)+2 \alpha w\left(A^{2} X\right)+2 c w(A X) \\
& -2(\lambda-\alpha)(\alpha+g(A W, W)) w(A X) \\
& -\alpha\left(\alpha+g(A W, W)+\frac{2 c}{\alpha^{2}} g(A W, W)\right) w(A X) \\
& -(\alpha+g(A W, W))\left(\phi \nabla \mu-\frac{\mu}{\alpha} \phi \nabla \alpha\right) \\
& +g\left(P_{3}, X\right)
\end{aligned}
$$

for some $P_{3} \in \operatorname{span}\{\xi, W\}$.
By the way, applying (6.20) by ϕ, and using (2.8) and (3.4), we find

$$
\begin{equation*}
\phi \nabla \mu-\frac{\mu}{\alpha} \phi \nabla \alpha=(2 \lambda-\alpha)\{-A W+\mu \xi+(\lambda-\alpha) W\}-\rho W . \tag{6.23}
\end{equation*}
$$

Because of (4.3), we have

$$
\begin{aligned}
A^{3} W= & -\frac{c}{\alpha} A^{2} W+(\lambda-\alpha)(\alpha+g(A W, W)) A W \\
& +\mu\left(\alpha+\frac{c}{\alpha}+g(A W, W)\right) A \xi
\end{aligned}
$$

Combining the last three equations, we obtain

$$
\begin{aligned}
& g\left(A W, \nabla_{X} U\right) \\
& =\frac{c}{\alpha} w\left(A^{2} X\right)-\left\{\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right\} w(A X)+g\left(P_{4}, X\right)
\end{aligned}
$$

for some $P_{4} \in \operatorname{span}\{\xi, W\}$. The completes the proof.
Remark 6.6. $W \rho=0$ on Ω.
In fact, we have

$$
W(g(A W, W))=g\left(\left(\nabla_{W} A\right) W, W\right)+2 g\left(A W, \nabla_{W} W\right),
$$

which together with (4.13) and Lemma 6.2 yields

$$
W(g(A W, W))=2 g\left(A W, \nabla_{W} W\right)
$$

However, if we take the inner product with $A W$ to (4.19) and make use of Lemma 6.2 and (6.14), then we obtain $g\left(A W, \nabla_{W} W\right)=0$. So we have $W(g(A W, W))=0$, which connected to (6.21) and Lemma 6.2 gives $W \rho=0$.

7. Proof of the Main Theorem

We will continue our discussions under the same assumptions as those in Section 6. Taking the inner product X to (6.20) and differentiating covariantly, we have

$$
\begin{aligned}
& (Y \mu)(X \mu)+\mu(Y(X \mu))-(Y \lambda-Y \alpha)(X \alpha)-(\lambda-\alpha)(Y(X \alpha)) \\
& =(2(Y \lambda)-Y \alpha) u(A X) \\
& \quad+(2 \lambda-\alpha)\left(g\left(\left(\nabla_{Y} A\right) U, X\right)+g\left(A \nabla_{Y} U, X\right)\right) \\
& \quad+(Y \rho) u(X)+\rho g\left(\nabla_{Y} U, X\right)+g\left((2 \lambda-\alpha) A U+\rho U, \nabla_{Y} X\right) .
\end{aligned}
$$

Taking the skew-symmetric part of this and using (2.4), we find

$$
\begin{align*}
& (X \lambda)(Y \alpha)-(Y \lambda)(X \alpha) \\
& +(2(X \lambda)-X \alpha) u(A Y)-(2(Y \lambda)-Y \alpha) u(A X) \\
& =c \mu(2 \lambda-\alpha)(\eta(Y) w(X)-\eta(X) w(Y)) \tag{7.1}\\
& \quad+(2 \lambda-\alpha)\left(g\left(A \nabla_{Y} U, X\right)-g\left(A \nabla_{X} U, Y\right)\right) \\
& \quad+(Y \rho) u(X)-(X \rho) u(Y)+\rho\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)
\end{align*}
$$

where we have used (2.4) and (2.8). Differentiating (6.21) covariantly and taking the inner product ξ to this, it follows from Lemma 6.2 that $\xi \rho=0$. Putting $Y=\xi$ in (7.1) and using (2.6) and $\xi \rho=0$, we find

$$
\begin{aligned}
& c \mu(2 \lambda-\alpha) w(X)-(2 \lambda-\alpha)\left\{g\left(\alpha \xi+\mu W, \nabla_{X} U\right)+g\left(\nabla_{\xi} U, A X\right)\right\} \\
& -\rho\left(g\left(\nabla_{X} U, \xi\right)-g\left(\nabla_{\xi} U, X\right)\right)=0
\end{aligned}
$$

or using (2.10), (5.7) and Lemma 6.2,

$$
\begin{equation*}
(2 \lambda-\alpha) A \nabla_{\xi} U+\rho \nabla_{\xi} U+\mu \rho A W \in \operatorname{span}\{\xi, W\} \tag{7.2}
\end{equation*}
$$

If we put $Y=W$ in (7.1) and take account of Lemma 6.2 and Remark 6.6, then we have

$$
\begin{align*}
& (2 \lambda-\alpha)\left\{g\left(\nabla_{X} U, A W\right)-g\left(A \nabla_{W} U, X\right)+c \mu \eta(X)\right\} \tag{7.3}\\
& +\rho\left(g\left(\nabla_{X} U, W\right)-g\left(\nabla_{W} U, X\right)\right)=0
\end{align*}
$$

By the way, putting $Y=W$ in (5.9), we have

$$
\begin{aligned}
& g\left(\nabla_{X} U, W\right)-g\left(\nabla_{W} U, X\right) \\
& =-\left(\alpha+\frac{2 c}{\alpha}\right) w(A X)-g(\phi \nabla \mu, X)+g\left(P_{5}, X\right)
\end{aligned}
$$

for some $P_{5} \in \operatorname{span}\{\xi, W\}$, which together with Lemma 6.5 and (7.3) implies that

$$
\begin{aligned}
& (2 \lambda-\alpha)\left\{\frac{c}{\alpha} A^{2} W-\left(\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right) A W-A \nabla_{W} U\right\} \\
& -\rho\left\{\left(\alpha+\frac{2 c}{\alpha}\right) A W+\phi \nabla \mu\right\} \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

It follows from this and (4.14) that

$$
\begin{aligned}
& (2 \lambda-\alpha) A \phi \nabla \mu+\rho \phi \nabla \mu \\
& +(2 \lambda-\alpha)\left\{\frac{c}{\alpha} A^{2} W+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W) A W\right\} \\
& +\rho\left(\alpha+\frac{2 c}{\alpha}\right) A W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

If we take account of (4.3), (6.21) and (6.23), then the last equation can be written as

$$
\begin{align*}
& \frac{\mu}{\alpha}(2 \lambda-\alpha) A \phi \nabla \mu+\rho \phi \nabla \mu+(2 \lambda-\alpha)^{2}\left(\lambda-\alpha+\frac{c}{\alpha}\right) A W \\
& +(2 \lambda-\alpha)\left\{\frac{c}{\alpha} A^{2} W+\left((\lambda-\alpha)^{2}-c\right) A W\right\} \tag{7.4}\\
& +\rho\left(\alpha+\frac{2 c}{\alpha}\right) A W \in \operatorname{span}\{\xi, W\} .
\end{align*}
$$

On the other hand, from (3.7) we have

$$
A \nabla_{\xi} U=\mu(3 \lambda-2 \alpha) A W-3 \mu A^{2} W+2 \mu^{2} A \xi+A \phi \nabla \alpha
$$

where we have used (2.6). Substituting this into (7.2), we find

$$
\begin{aligned}
& (2 \lambda-\alpha) A \phi \nabla \alpha+\rho \phi \nabla \alpha-2 \mu \rho A W \\
& -(2 \lambda-\alpha) \mu\left\{3 A^{2} W+(2 \alpha-3 \lambda) A W\right\} \in \operatorname{span}\{\xi, W\} .
\end{aligned}
$$

Combining this to (7.4), we obtain

$$
\begin{aligned}
& (\lambda-\alpha)\left\{-\frac{\rho}{\mu} \phi \nabla \alpha+2 \rho A W+(2 \lambda-\alpha)\left(3 A^{2} W+(2 \alpha-3 \lambda) A W\right)\right\} \\
& +\rho \phi \nabla \mu+(2 \lambda-\alpha)^{2}\left(\lambda-\alpha+\frac{c}{\alpha}\right) A W+\frac{c}{\alpha}(2 \lambda-\alpha) A^{2} W \\
& +(2 \lambda-\alpha)\left\{(\lambda-\alpha)^{2}-c\right\} A W+\rho\left(\alpha+\frac{2 c}{\alpha}\right) A W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

which together with (4.3) and (6.23) implies that

$$
\left\{2 \rho \alpha-(2 \lambda-\alpha)\left(\mu^{2}+c\right)\right\} A W \in \operatorname{span}\{\xi, W\}
$$

that is,

$$
\left\{2 \rho \alpha-(2 \lambda-\alpha)\left(\mu^{2}+c\right)\right\}(A W-\mu \xi-g(A W, W))=0
$$

According to Lemma 5.2, we see that

$$
\begin{equation*}
2 \rho \alpha=(2 \lambda-\alpha)\left(\mu^{2}+c\right) . \tag{7.5}
\end{equation*}
$$

From this fact and Lemma 6.4, we see that $2 \alpha \theta=\left(\mu^{2}+c\right)^{2}$ by virtue of $2 \lambda-\alpha \neq 0$. Thus, (6.19) is reduced to

$$
\begin{equation*}
\kappa \nabla \alpha=2 \alpha A U+\left(\mu^{2}+c\right) U \tag{7.6}
\end{equation*}
$$

with the aid of Remark 6.3, where we have put

$$
\kappa=\frac{\alpha^{2}(h-\lambda)}{2\left(\mu^{2}+c\right)} .
$$

Differentiating this covariantly and taking the inner product with ξ, it follows from (6.1) and Lemma 6.2 that $\xi \kappa=0$.

As in the same method as that used from (6.6) to drive (6.7), we can deduce from (7.6) that

$$
\begin{aligned}
& 2 \alpha g\left(A \nabla_{\xi} U, X\right)+\left(\mu^{2}+c\right) g\left(\nabla_{\xi} U, X\right) \\
& =\mu\left\{-2 c \alpha w(X)-2 \alpha^{2} w(A X)-\left(\mu^{2}+c\right) w(A X)+2 \alpha g\left(\nabla_{X} U, W\right)\right\}
\end{aligned}
$$

which together with (5.7) implies that

$$
\begin{equation*}
2 \alpha A \nabla_{\xi} U+\left(\mu^{2}+c\right) \nabla_{\xi} U+\mu\left(\mu^{2}+c\right) A W \in \operatorname{span}\{\xi, W\} \tag{7.7}
\end{equation*}
$$

On the other hand, applying (7.6) by ϕ and using (2.6) and (3.3), we find

$$
\frac{\kappa}{\mu} \phi \nabla \alpha=-2 \alpha A W+\left(\mu^{2}+c\right) W+2 \alpha \mu \xi
$$

which together with (4.3) yields

$$
\frac{\kappa}{\mu} A \phi \nabla \alpha=\left(\mu^{2}+c\right) A W-2 \mu g(A W, W) A \xi-2 c \mu \xi .
$$

From Lemma 6.1 we have $\kappa \neq 0$ and hence combining the last two equations, it is verified that

$$
\begin{equation*}
2 \alpha A \phi \nabla \alpha+\left(\mu^{2}+c\right) \phi \nabla \alpha \in \operatorname{span}\{\xi, W\} \tag{7.8}
\end{equation*}
$$

By the way, applying (3.7) by A and using (4.3), we find

$$
\begin{aligned}
& 2 \alpha A \nabla_{\xi} U+\left(\mu^{2}+c\right) \nabla_{\xi} U-2 \alpha \mu\left(3 \lambda-2 \alpha+\frac{3 c}{\alpha}\right) A W \\
& +3 \mu\left(\mu^{2}+c\right) A W-2 \alpha A \phi \nabla \alpha-\left(\mu^{2}+c\right) \phi \nabla \alpha \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

which together with (7.7) and (7.8) gives

$$
\left(2 \mu^{2}+\alpha^{2}+2 c\right)(A W-\mu \xi-g(A W, W))=0
$$

Owing to Lemma 5.2 , we see that $2 \mu^{2}+\alpha^{2}+2 c=0$, which implies that $2 \mu \nabla \mu+$ $\alpha \nabla \alpha=0$. Hence (6.20) reformed as

$$
\begin{equation*}
\nabla \alpha+2 A U+\frac{\mu^{2}+c}{\alpha} U=0 \tag{7.9}
\end{equation*}
$$

by virtue of $2 \lambda-\alpha \neq 0$ on Ω, where we have used (7.5). Combining this to (6.19), we have

$$
\left\{\mu^{2}+c+\frac{1}{2} \alpha(h-\lambda)\right\} A U=\frac{1}{4}\left\{4 \theta+(h-\lambda)\left(\mu^{2}+c\right)\right\} U .
$$

According to Remark 5.1, it follows that $\mu^{2}+c+(1 / 2) \alpha(h-\lambda)=0$, which together with (6.1) gives μ is constant and hence α is constant. Thus (7.9) becomes $A U=$ $-\left\{\left(\mu^{2}+c\right) /(2 \alpha)\right\} U$, a contradiction by virtue of Remark 5.1.

Therefore we verify that $\Omega=\emptyset$, that is, $A \xi=\alpha \xi$ on M. Thus, from (2.18) we see that $R_{\xi} S=S R_{\xi}$. Hence from Theorem 1.2 ([9]) M is homogeneous real hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. Since $\operatorname{Tr} A$ is constant and (2.16), it is easy to see that $\phi R_{\xi}=R_{\xi} \phi$ and $\operatorname{Tr} R_{\xi}$ is constant.

Consequently we conclude that
Theorem 7.1. Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq$ $0, n \geq 3$ which satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ and $\operatorname{Tr} R_{\xi}$ is constant. Then M holds $\phi R_{\xi}=$ $R_{\xi} \phi$ if and only if $A \xi=0$ or M is locally congruent to one of following:
(I) In cases that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$.
(II) In cases $M_{n}(c)=H_{n} \mathbb{C}$,
(A_{0}) a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math., 395(1989), 132-141.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
[3] J. T. Cho and U-H. Ki, Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar., 80(1998), 155-167.
[4] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371.
[5] U-H. Ki, I. -B. Kim and D. H. Lim, Characterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc., 47(2010), 1-15.
[6] U-H. Ki and H. Kurihara, Real hypersurfaces and ξ-parallel structure Jacobi operators in complex space forms, J. Korean Academy Sciences, Sciences Series, 48(2009), 5378.
[7] U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J., 32(2009), 5-23.
[8] U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math., 33(2009), 39-56.
[9] U-H. Ki, S. Nagai and R. Takagi, The structure vector field and structure Jacobi operator of real hypersurfaces in nonflat complex space forms, Geom. Dedicata, 149(2010), 161-176.
[10] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math J. Okayama Univ., 32(1990), 207-221.
[11] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
[12] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperblic space, Geom Dedicata, 20(1986), 245-261.
[13] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364.
[14] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613.
[15] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc., 13(2006), 459469.
[16] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 10051009.
[17] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
[18] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc., 15(1975), 43-53, 507-516.

[^0]: * Corresponding Author.

 Received August 18, 2015; accepted January 19, 2016.
 2010 Mathematics Subject Classification: 53B20, 53C15, 53C25.
 Key words and phrases: complex space form, real hypersurface, structure Jacobi operator, structure tensor, Ricci tensor.

