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ON THE SPECTRAL GEOMETRY FOR
THE JACOBI OPERATORS OF HARMONIC
MAPS INTO PRODUCT MANIFOLDS

TAE Ho KANG, U-HaNG K1 AND Jin SUK PaAk

ABSTRACT. We investigate the geometric properties reflected by
the spectra of the Jacobi operator of a harmonic map when the
target manifold is a Riemannian product manifold or a Kaehlerian
product manifold. And also we study the spectral characterization
of Riemannian sumersions when the target manifold is $™ x §" or
CP™ x CP".

1. Introduction

The inverse eigenvalue problem of the second order operators arising
in Riemannian geometry has been studied by many authors. Among
them, the Jacobi operator for a harmonic map was studied in [7.8,9],
and for the functional area was studied in [1,4,6]. The Jacobi operator
of a harmonic map f arises in the second variation formula of the energy
of the harmonic map f. This formula can be expressed in terms of an
elliptic differential operator J¢(called the Jacobi operator) defined on
the space of cross sections of the induced bundle of the target manifold.

The examples of harmonic maps include harmonic functions, geodes-
ics, isometric minimal immersions and holomorph:c or anti-holomorphic
maps of Kaehler manifolds etc..

In this paper we characterize both F-invariant and F-anti-invariant
(resp. Kaehlerian and totally real) immersions into the Riemannian
product manifolds(resp. the Kaehlerian product manifolds) by the
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spectra of Jacobi operators. And also we study the spectral char-

acterization of Riemannian submersions when the target manifold is
S™ x S™ or CP™ x CP".

2. Preliminaries

Let (M,g) be an m-dimensional connected, closed(i.e., compact
without boundary) Riemannian manifold with the metric g and (N, h)
an n-dimensional Riemannian manifold with the metric h. A smooth
map f : (M, g) — (N, h) is said to be harmonic if it is a critical point
of the energy

E(f) = /[ e(f) dv,,

where the energy density e(f) of f is defined to be e(f) := 3 D L h(feei
f«€i), f« is the differential of f, {e;.--- ,e,;,} a local orthonormal frame
field on M, and dv, is the volume element with respect to g. Let us
consider the Jacobi operator Js for a harmonic map f defined by

JiV = AV =RV

for V. € I'(E)(the space of smooth sections of £), where A is the
rough Laplacian associated to the induced connection V of the in-
duced bundle E := f*TN defined by VxV := Vi xV (for X a tan-
gent vector of M, V" the Levi-Civita connection of the metric h), and
RV =5 " Ra(V, fre:) feei(Rp is the Riemannian curvature tensor
of (N, h)). In this paper, we take the convention

R(XY):= [V, VL] - Vg

where X and Y are tangent vector fields on N. Then J; is self-adjoint,
elliptic of second order and has a discrete spectrum as a consequence

of the compactness of M.
Consider the semigroup e~!’s given by

e” 1V (x) = [ K(t.z,y,J5)V(y) dug(y),
JM
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where K(t,z,y,J5) € Hom(E,, ¥,) is the kernel function (r,y e M,
E; is the fibre of F over x). Then we have asymptotic expansions for
the L2-trace

(21)  Trle ) => "™ ~ (4nt)" % > ttan(Jp) (4107,
i=1 n=0

where each a,(Jy) is the spectral invariant of J £» which depends only
on the discrete spectrum ;

Spec(Jp) = {1 <Ao< < Ao | 400}

Applying the Jacobi operator J ¢ of a harmonic map f to the Gilkey’s
results in [3,p.327], we obtain

THEOREM 2.1 [cf.9]. For a harmonic map f : (M, g) — (N, h)

(2.2) ao(Jy) = nVol(M, g),
(2.3) ay(Jy) = 5 /M g dug + /M Tr(Rj)dvg,
(2.4)

T
a2(Jp) = o | [575% = 2llpgll* + 2|| Ry |[?] dv,
360 J,,

1 = 2
+ 365 [—30IIRY||” + 607, Tr(Ry) + L80TT(R£%)] dv,,
M

where RV is the curvature tensor of the connection V on E,which is

defined by RV := f*R},, and Ry, pg,74 are the curvature tensor, Ricci
tensor, scalar curvature on M, respectively.

REMARK. dim(M) = m is determined by Spec(J;) (i.e., dim (M) is
a spectral invariant of J;) because of the asymptotic expansion (2.1).
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3. The spectral geometry for J; of a harmonic map f into
a Riemannian product manifold

To begin with we define an almost product manifold. Let N be an
n-dimensional manifold with a tensor F of type (1,1) such that

F? =1,

where [ denotes the identity transformation. Then we say that N is an

almost product manifold with almost product structure F. If an almost
product manifold N admits a Riernannian metric h such that

hFX,FY)=h(X,Y)

for any vector fields X and Y on .V, then N is called to be an almost
product Riemannian manifold.

Let N™ and N™ be n; and ny-dimensional Riemannian manifolds
with Riemannian metrics h; and h; respectively. Now we suppose that
N™ and N™ are real space forms with constant sectional curvatures
¢ and ¢z and denote them by N™t{¢;) and N™2(c;) respectively. Then
the Riemannian curvature tensor R, of N™(¢;) is given by

Ri( X, Y)Z =a{m(Y,2)X — h(X,2)Y}
and the Riemannian curvature tensor Ry of N™2(c9) is given by
Ro(X,Y)Z = co{ho(Y, Z)X — ha(X, Z)Y },

where X, Y and Z are vector flelds tangent to N™ or N"2. We consider
the Riemannian product manifold N=N"1(¢;) x N"2(cy). We denote
by P and @ the projection operators of tangent space of N to the
tangent space of N™ and N™2 respectively. Then we have

P2=PQR?=Q,PQ=0=QF.

Putting F' = P — Q, we get F? = I. Thus F is an almost product
structure on N. Moreover for any tangent vector fields X,Y on N, we
define a Riemannian metric h on N by

h(X,Y)=h(PX, PY)+ hy(QX,QY)
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for any vector fields X and Y of N. It is clear that
hFX,Y) = h(FY,X).

The Riemannian curvature tensor R}, of the Riemannian product man-
ifold N=N"(c1) x N"2(cy) (ny,n2 > 2) is given by
Ru(X,Y)Z = o{h(Y,Z)X — hiX,2)Y + h(FY, 2)FX — h(FX,Z)FY}

(3.1) 4 B{R(Y, Z)FX — Wz Z)FY + h(FY,2)X — h(FX,Z)V}

for any vector fields X,Y and Z on N, where a = t(er + ¢2) and
B = 5(c1 — e2)(ck[10]).

Define a symmetric 2-form Q on N by Q(X,Y) = h(X, FY). Then
for a harmonic map f : (M, g) —- (N, h) we obtain from (3.1)

(3.2) Tr(Ry) =2(n — 2)ae(f) + a(TriF)(Tryf*Q)
+(n=2)BTrg f*Q + 28e(f)(TryF),

(3.3)
Tr(R}) = Z Zh(Rh (fe€isva) fues, Ru(fues,va) fue;)
1,7=1a=1
= a®[21f"h)* + 4(n — De(£)* + 2| £ QU + (n — &) (Try f*0)>
+4e(f)(Trg f*Q)(TrpF)]
+208[4 Y fHQRR) (e, e;) + (dn — 16)e(f)(Try £*Q)
i,j=1
+4e(f)* (TraF) + (TrinF)(Tre f*0)?
+ B2 217 Bl + 4(n = 4)e () + 207907 + (n — 4)(Try Q)
+ 2e(f)(T7"gf*Q)(Trh,F)J
(3.4)
IRY| = Z Z (Ri(fuei, fu€;)va, v5) (i (futi, fre;)va, vp)

1,7=1a,b=1

= o®[16e(f)" — dl|f Il + 4(Tre f*Q)* — 4] £*Q)]
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m

+2a8[16e(f)(Tref*Q) - 8 > f1(QARh)(e;,¢;)]

57=1

+ B2[16e(f)* — 4|l f*h|* + 4(Tre )% - 4] 797,

where ||f*h|* = 27 h(fuei, fue) 2 QU = 37, Alfeer, Ffoe;)?,
g SR M) (e ey) = 327 W fuei, fues)h(fves, fuej), {va ta =
1,---,n} is a local orthonormal frame field on N, and {e; : i =
1,---,m} is a local orthonormal frame field on M

Thus substituting (3.2) ~ (3.4) mto Theorem 2 1, we get

THEOREM 3.1. Let f : (M,g) — N = N"'(c1) x N"2(cy) be
a harmonic map of an m-dimensional compact Riemannian manifold
(M, g) into an n{= ny +nz)-dimensional Riemannian product manifold
N. Then the coefficients ao(J¢), ai(Js) and az(J;) of the asymptotic
expansion for the Jacobi operator J; are respectively given by

(3.5) ap(Js) = nVol(M,g),
(3.6) a1(Jf) = % /M Tedug
+ /M [2(n = 2)ae(f) + (TraF)(Try f*Q)
+(n = 2)B8(Trg f*Q) + 28e(f)(Trn F)] dug
(3.7)
) = 555 [ 157" = 2Nl + 2 R,
+ -1-15 [(24n — 112)(a® + 8)e(f)* + 16(a® + )| f*h|

+ (6n — 28><a2 + BA)(Tr, £ + 16(e” + 82| £
+16(3n — 14)aBe(f)(Tr,f*Q) + 12a8(Try, F)(Try f*)*
+12(20% + B2)e(f)(Tre f*Q)(Tra F) + 4308e(£)* (Try F)
+ 6408 fH(QRA)(e; ;)] dug

N
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1 . *
+ 5 /M [2(17, =2)ael f)+ a(TrnF)(Try f*2)

+(n = 2)B(Trg f* Q) + 28e(f){(Trnl)]| 1y duy

COROLLARY 3.2. Let f, f' be harmonic maps of (M, g) with con-
stant scalar curvature into N = N™ (c;) x N"2(cy) with ny = ny and
¢y = c. Assume that Spec(Js) = Spec(Jy). Then we have
() B(f) = E(f). |
(i) [o, [(24n = 112)e(£)? + 16| f ||

(6n — 28)(Trg f*)* + 16||f*Q||2'] dvg
= [, [(24n = 112)e( )2 + 16]| ||

(61 — 28)(Try f*" ) + 16| £ Q|*] dv,.

Proof. Tt is clear from our assumptions that TrpF = 0 and 8 = 0.
Then (i) and (ii) follow from (3.€) and (3.7) respectively. a

CoOROLLARY 3.3. Let (M,g) be a compact Riemannian manifold
whose scalar curvature is constant. Let f, f' be isometric minimal
immersions of (M, g) into N = N™ (¢;) x N™2:¢y) with ny # ny or
c1 # co. Assume that Spec(Jy) = Spec(Jy ). Then we have

(3.8) / Trgf*fldvg:/ Trof " Qdv,,
M

JM

/ [{(6n — 28)(a® + 8%) + 1208} (T1,f*Q)?
M

+16(a? + 82)|1f* Q%] dv
(3.9) J vy

= / [{(6n — 28)(a® + 37) + 12(9?5}(T’Tgf/*S))2
JAM
+16(a® + 89| Q"] du,.
2

h)(ei,e;) = Tryf*§2. Then (3.8) and (3.9) follow from (3.6) and (3.7)
respectively. Ul

Proof. Note that e(f) = 3, TryF = constant and 3,  f*(Q &
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Let N be an almost product Riemannian manifold with almost prod-
uct structure F. Let f : M — N be an isometric immersion of a Rie-
mannian manifold M into N. If Ff (T, M) C f.(T, M) (Ff (TM) C
fu(TeM)™* resp.) for each € M, then f is said to be an F-invariant
(F-anti-invariant resp.) immersion.

LEMMA 3.4. Let N be an almost product Riemannian manifold
with almost product structure F. Let f be an isometric immersion of
a compact Riemannian manifold (M, g) into (N, h). Then we have the
nequality

0 S/ If* Q) dvy < dim(M)Vol(M, g).
M

Moreover,

(i) the equality |, , Fadoll& dug = 0 holds if and only if the immersion
f is F-anti-invariant,

(ii) the equality f,, |[f*Q||2d'ug = dim(M)VoliM, g) holds if and
only if the immersion f is F-invariant.

Proof. The proof is similar to that of Lemma 6.5([9]). O

ProrosiTION 3.5. Let (M, g) be a compact Riemannian manifold
whose scalar curvature is constant. Let f,f' be isometric minimal
immersions of (M, g) into N = N™(¢;) x N™2(cy) with ny > na,n =
ny+ny 2 Sandey > cp. Assume that Spec(Js) = Spec(Jg). If f is an
F-anti-invariant immersion, then so is f'.

Proof. 1f f is an F-anti-invariant immersion, then we have from

(3.9)
0= /M [{(6n — 28)(a® + %) + 1208} (Try f*)°
+16(a® + 82)|1 /7 QYf°] dv,.
Since the coefficients of (Tr,f'"Q2)* and ||f*Q|° are positive re-

spectively, we get || f’ *QH2 = 0, which and Lemma 3.4 complete the
proof. O
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PROPOSITION 3.6. Let (M, g) be a compact Riemannian manifold
whose scalar curvature is constant. Let f,f’ be isometric minimal
immersions of (M, g) into N = N%(c;) x N%(cy) with ¢; < ¢y. Assume
that Spec(Jy) = Spec(Jy ). If f is an F-invariant immersion, then so
is f’.

Proof. Assume that f is an F-invariant immersion. Then we have
from Lemma 3.4 and (3.9)

(3.10)

0 <16(a® + 82){dim(M) — || "} dv,
={~4(c”® + 3*)} + 1205} /;[{(Trgf'*ﬂ)2 -- (Trgf*Q)z} dvyg.

On the other hand, the restricted structure tensor F| forum to f(M) is
also an almost product structure on f(M) whose eigenvalues are +1 or
—1. Hence T'r, f*(} is constant on M, because it is continuous function
on M. This fact and (3.10) yield the inequality

A{ (Tre " Q)" dv, > /M (Try f*0)? dv,

because of (3.8) and the Cauchy-Schwarz inequality. Hence (3.10) im-

ply that dim(M)Vol(M,g) = [,, ||f’*Q|| dvg. Therefore Lemma 3.4
completes the proof. a

4. The spectral geometry for J; of a harmonic map f into
a Kaehlerian product manifold

Let N™ and N™ be n; and ny-dimensional Kaeherian manifolds
with almost complex structures ./; and J, respectively. Now we sup-
pose that N™ and N™2 are complex space forms with constant holo-
morphic sectional curvatures ¢; and ¢, and denote them by N™ (¢;)
and N™2(cy) respectively. Then the Riemannian curvature tensor R;
of N™'(¢y) is given by

R(X,Y)Z = 2 [h(Y, Z2)X — hy (X, 2)Y + hi (DY, Z) ] X
— (I X, Z)IY + 20 (X, T Y I, Z]
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and the Riemannian curvature tensor Ry of N "2(¢q) is given by

Ry(X,Y)Z = %f—[hg(Y, 2)X - ha(X, Z2)Y + ho( oY, Z2)Jo X
= ha (o X, Z) oY + 2hy(X, JoY ) o Z]
where X, Y and Z are vector fields tangent to N™ or N™2. We consider
the Kaehlerian product manifold N=N"1(¢;) x N™(cp). In the same
way as In the case of Riemannian product, we will denote by P and
@ the projection operators of tangent space of the Kaehlerian product
manifold N to the tangent space of N™ and N’?2 respectively, and

F=p°rP-Q an almost product structure on N. Let us put JX =
J1PX + J,QX for any vector field X on N. Then we see that

JIP=PJ, ,Q =QJ, FJ =JF,

J? =1 h(JX,JY) = h(X.Y), V=0,

where b is the Riemannian metric on N defined by h; and Ay as in the
case of Riemannian product. Thus J is a Kaehlerian structure on N.
The Riemannian curvature tensor R, of a Kaehlerian product manifold
N=N"1(c;) x N"2(c3) (ny,ng > 2) is given by

4.1

( Ri(f(, Y)Z =al[h(Y,Z)X -~ h(X,2)Y

~h(JX,2)JY +20(X,JY)JZ + h(FY,Z)FX
~WFX,Z)FY + h(PJY,Z)FJX — W(FJX,2)FJY
+2h(FX, JY)FJZ]

+B[WFY, Z2)X - h(FX,2)Y + K(Y,Z)FX

~ WX, Z)FY + h(FJY,Z)JX - h(FJX,2)JY
+h(JY, Z)FIX ~ h(JX, Z)FJY + 2h(FX,JV)IZ
+2h(X. JY)FJZ]

+hWJY,2)JX

for any vector fields X, Y and Z on N , where a = %6(01 + ¢2) and
B = -116(61 - 02) (Cf[l(]])
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Put Q(X,Y) = h(X,FY),0(X,Y) = h(X,FJY),w(X.V) = h(X, JY)
and 37, fr(ORw)(ei e;) =3, 8(frei, frej)w(fuei, fue;). Then for a
harmonic map f : (M, g) — (N.h) we obtain from (4.1)

(4.2)

(4.3)

Tr(

(4.4)

IRV =

Tr(Rys) = (2n+ 8)ae(f) + a(TraF)(Tr,f*Q)
+(n+4)8Tr  f*Q + 28e(f)(TriF),

m

Z Zh Rh f*euva)f*ezaRh(f*eJ )f*eJ)

t,j=1a=1
= a®[20[|f*h]* + 4(n + 8)e(£)? — 12|| F*||* + 20]| £
+(n+8)(Trg f*Q)° — 12| f*01|> + de(f) Tro f*Q)(TrF))

120840 3 QBB ene) —24 Y FERW)ene)

ij=1 i,=1
+4(n +8)e(f)(Tre f*Q) + 4e(f)*(TriF + (TrinF)(Try f*Q0)°]
+ B2[2001 £ A" + 4(n + &)e(£)? + 20| £ — 12]|£79)2
+(n+8)(Tro f*Q)* = 12|l f*wl|® + de(f)(Try f*Q)(Tr F)|,

= Z Z Rh f*ezaf ej)va vb)h(Rh f*el f* )Ua Ub)

i,j=1a,b=1
= a?[32¢(f)* ~ 8||f*h* + 4(n + 10)]| F*®
+8(Tro f*Q)° — 8| F*Q* + 4(n + 10)| £ 6|2

m

+8 > fr(ORw)(es, e)(Try F))

1,5=1

+ 2a8[326(f)(Trgf*Q) (Tth)||f*w||2 + 4(TroF)| £0)°

+ 8(n + 10) Zf (ORw)(e; e —162 [ Q@h)(ez,e])]

2,0=1 2,7 =1

+ B2 [32e(£) — 8| f*h|* + 8(Tryf*Q)°
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— 8|/ QU + 4(n + 10)|| " w| + 4(n + 10) |6

m

+8(TraF) Y fH(ORwile; ;)]
1,7=1
where {v, : @ =1,--- ,n} is a local orthonormal frame field on N and
{e;:i=1,--- ,m} is a local orthonormal frame field on M.

Substituting (4.2) ~ (4.4) into Theorem 2.1, we zet

THEOREM 4.1. Let f : (M,g) — N = N"(¢;) x N™2(c3) be
a harmonic map of an m-dimensional compact Riemannian manifold
(M, g) into an n{= n; + ng)-dimensional Kaehlerian product manifold
N. Then the coefficients ao(Jy), a1{Jy) and az(Js) of the asymptotic
expansion for the Jacobi operator J; are respectively given by

(4.5) ap(Jr) =nVol(M,g),

(4.6) al(Jf)zﬁ/ Todv,
6 M

+ / [2(n +4)ae(f) + a(TraF)(Tref*Q)
Jm

+ (n +4)B(Try f*Q) + 28e(f)(Try F)] dug.

(4.7)
n . .
7)) = 555 | 157% = 2l + 2R, P,

+ %2_ ’ 8(3n + 20)(a? + B)e(f)?

+ 128(a + 8|1 h)% + 128(a® + £2)| )2
— 4(n + 28)(a® + 8) || fw|)?

b 2(3n + 20)(a? + (2)(Try £*Q)*

— 4(n + 28)(a® + 57| f6|”

—8(a®+8%)) frORw)(es ;) (I, F)

2,5
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+16(3n + 20)afe(f)(Tre f*Q) + 51208 > " f*(QR h)(e;, e;)
1.7
—16(n+28)aB > f (B Rw)(es, ;) — 8aB(TraF)|| f*wl|?
i,j
~8aB(TriF)| 6" + 24(a® + B%)e(f)(Tro f*Q)(Try F)
+ 48a3e(f)*(TryF) + lQa,@(TThF)(T'rgf*ﬁ)z} dvg
+ 5 [ 20+ aels) + alTrF)(Tr, )
6/
+ (n+4)B(Trg f*Q) + 28e(f)(TTaF)] 14 dv,.

COROLLARY 4.2. Let f, f' be harmonic maps of (M,g) with con-
stant scalar curvature into N = N™ (¢;) x N™%(c) with ny = no and
c1 = cp. Assume that Spec(Js) = Spec(Js ). Then we obtain
0) B(f) = B(f). | |
(i) [, [8(3n + 20)e(f)* + 128]|f*h))* + 128||f Q2

—4(n + 28)]| frw|* +2(3n + 2(‘)(Trgf 0)? - 4w + 281 £*6]1%] dvg
= [, [8(3n + 20)e f) + 128" h))° +128||f’*n|

—4(n+ 28)I|f’*w|l +20B8n +20)(Try fQ ) —a(n+ 28)||f'*9|]2] dug

Proof. (i) and (ii) follow from (4.6) and (4.7) respectively. OJ
COROLLARY 4.3. Let f, f' be isometric minimal immersions of (M, g)
into N = N™(c;) x N"2(c9) with ny = ny and ¢, = ¢o. Assume that
Spec(Jy) = Spec(Jy+). Then we bave
(4.8)
| 1280007 - 4 + 2802w
M
+2(3n + 20)a*(Try f* Q)% — 4(n + 28)a?|| £*6])%] dv,
:/ (12802 QY — din + 28)a2 || /" w |

+ 230 4 20)02(Try £ 0)° — 4(n + 28) Q2||£*601%] do,.
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Proof. Note that 8 =0 = TryF and e(f) = . Then (4.8) follows
from (4.7). a

LEMMA 4.4 [7]. Let (N,h,J) be a Hermitian manifold with the
Kaehler form w. Let f be an isometric immersion of a compact Rie-
mannian manifold (M, g) into (N, }). Then we have the equality

0< / 1f*w|? du, < dim(M)Vol(M, g).
M

Moreover,

(i) the equality [,, 1 *wlf? dvg = 0 holds if and only if the immersion
f is totally real,

(ii) the equality [, Hf*wH2dvg = dim(M)Vol(M,g) holds if and
only if the immersion f is Kaehlerian.

PRrROPOSITION 4.5. Let f, f' be F-invariant minimal immersions of
(M,g) into N = N™{c1) x N™2(cq) with ny = ng and ¢; = ca. Assume
that Spec(Jy) = Spec(Js). Then

(i) if f is a totally real immersion, then so is f’,

(i1) if f is a Kaehlerian immersion, then so is f'

Proof. Tt follows from (4.8) that

(4.9) / AWl + 15701 = I/M(llf’*wIIQ )

because that f and f’ are F-invariant immersions. Assume that f is
totally real immersion. Then we have ||f*w|| = 0 = ||f*8||. It follows
from (4.9) that || f'*w|| = 0. Then Lemma 4.4 implies that f’is a totally
real immersion. Next, assume that f is a Kaehlerian immersion. Then
we have ||f*w||* = dim(M)= ||f*0/|>. From (4.9) and Lemma 4.4 we
obtain 0 < f, [(m — ||f’*w||2) + (m — Hf’*9]|2)] dv,. This means that

2 . . ”
Ilf"*w||” = m because that the two terms of the inequality are positive
respectively. Hence Lemma 4.4 shows that f’ is also a Kaehlerian
immersioti. 0l
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PRrROPOSITION 4.6. Let f, f' be F-anti-invariant minimal immer-
sions of (M, g) into N = N™ (c,} x N"2(c3) with ny = ny and ¢ = cs.
Assume that Spec(Jy) = Spec(Jy). Then

(i) if f is a totally real immersion, then so is f’,

(ii) if f is a Kaehlerian immersion, then so is f'.

Proof. Since f and f’ are F-anti-invariant immersions, ||f*Q| = 0
= Tryf*Q because of Lemma 3.4. From this and (4.8), we get the
same equation (4.9). The other part of the proof is similar to that of
Proposition 4.5. 0

5. Harmonic morphisms and harmonic Riemannian sub-
mersions

First of all we introduce the notion of harrionic morphisms (for
details, see [3,8]).

A smooth map f : (M,g) —— (N,h) is a harmonic morphism if
v o f is a harmonic function in f~1(V) for every function v which is
harmonic in an open set V C N such that f~1(V) # ¢.

A smoothmap f : (M, g) — (N, h) is horizontally weakly conformal
if (i) fax : Te M — Ty N is surjective at each point x with e(f)(z) #
0, (ii) there exists a smooth function A on M such that for each z € M
with e(f)(x) #0, f*h(X,Y) = XM (2)g(X,Y) for X,Y € H,, where H,
is the orthogonal complement of Ker f, with respect to g,,r € M.

The spectral charaterization of harmonic Riemannian submersions
among the set of all harmonic morphisms when the target manifolds
are the standard sphere, complex projective spacs ([9]) and the quater-
nionic projective space ([7]) has been studied, by using the following
theorem.

THEOREM 5.1 [3,8]. (i) if dim(M) < dim(N). every harmonic mor-
phism is constant.

(ii) If dim(M) > dim(N), a smooth map f : M,g) — (N,h) is a
harmonic morphism if and only if f is horizontally weakly conformal
and harmonic.

It is known (cf.[3]) that the set M* := {&x € M : e(f)(z) # 0} is open
and dense in M and the functior: A* is given by A% = 2¢(f)dim(N)~!,
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and ||f*‘h||2 = dim(N)M. A smooth map f : (M,g) — (N,h) is a
Riemannian submersion if it is semi-conformal with A =1 on M.

THEOREM 5.2. Let f, f' be harmonic morphisms of a compact Rie-
mannian manifold (M, g) with constant scalar curvature into the 5™ x
S™ or CP"™ x CP", where S™ and C'P™ denote the standard n-sphere
with the canonical metric and the complex projective space with the
Fubini Study metric, respectively. Assume that Spec(Jy) = Spec(Jy).
If f is a Riemannian submersion, then so is f'.

Proof. It is sufficient to show that the function X% for f’ satisfies
A2 =1 everywhere on M.
Case 1. (N = S x 8™, h). In this case, e(f') = n)?, 1 R||* = 2nA4,
e(f) =n and ||f*h|* = 2n.
Now we show that if f is a harmonic morphism of (M, g) into (N =
S™ x S™, h), then
1 Trg f* QU == AYTTF)?,

1F=QU = [1£7hl* on M.

In fact, at each point © € M*, we can define a linear transformation F
of H, into itself such that Fo f, = f, o F. Then

F?=1g(FX,FY)=g(X,Y), X,Y € H,.

Taking an orthonormal basis {e,;a = 1,...,2n} of (H,, g,), we obtain

2n 2n
(Trof* 0% =[S hlfeea Fhrca))” = [Y bl fuea, fuFea)]
a=1 a=1

2n
= [Z Ag(eq, Fe, )]2 = AN(TrF)?

and
) 2n 2n ~
17O = ) h(feea Ffren) = > h(foeqs fuFey)?
a,b=1 a,b=1

=20\t = || b))%,
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where TrF is constant on M*.

If f' is a harmonic morphism, then we can also define a linear trans-
formation F” of H,' into itself such that Fof', = f' . oF' where H,' is
the orthogonal complement of Kerf’, with respect to g,,x € M. Note
that TrF’ = TrF = const. on M*.

Now let f, f' be harmonic morphisms of (M,g) into (S™ x S", k)
with Spec(Js) = Spec(Js ). Then, by Corollary 3.2, we have

(1) E(f) = E(f")
and

(2) [y {(24n = 112)e(£)? + 32|| f~R||* + (61 — 28)(Try £*Q)2} du,
= [o,{(24n — 112)e(f')? + 32 /" h||* + (6n — 28)(Try £'* )2} dv,.
If f is a Riemannian submersion, then (1) is equivalent to [ A2 dug =

Jas dvg, and (2) is equivalent to [ v A dvg = [, dvg. Therefore we get
A% =1 everywhere on M by the Cauchy-Schwary inequality.

Case 2. N = (CP" x CP",h). At each point x € M*, we define a
linear transformation J of H, into itself such that Jo f, = f, o J and
J? = —I, where J is the complex structure of N = (CP™ x CP"™ h).
Then ¢(JX,JY) = g(X,Y) and g(JX,X) =0, X.Y € H,. Taking
{ea, Jegia =1, ...,n} as an orthonormal basis of (H,,g,), then we can

obtain , , , )
1£701" = [If*wl® = [Lf*RlI" = 1£7 Q)" = 2nA%,

where n is of complex dimension Now let f and f’ be harmonic mor-
phisms (M, g) into N = (CP™ x CP", h) with Spec(Js) = Spec(Jy:).
Then Corollary 4.2 implies that

(3) E(f) = E(f")

and

(4) [y {8(3n+20)e(£)* +8(4 = )| f*hl)* + 2(3n + 20)(Try £*Q)2} dv,
= [, {8(3n+20)e(f")% +8(4— n)|| £ hl* +2(3n -+ 20)(Try £ 0)2} do, .

Then by a similar argument to that in Case 1, we complete the
proof. O
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