Acknowledgement
We are grateful to the referee for suggesting several useful points which make our manuscript get improvement.
References
- K. Akutagawa and S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata 164 (2013), 351-355. https://doi.org/10.1007/s10711-012-9778-1
- A. Balmus, S. Montaldo, and C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space forms, Math. Nachr. 283 (2010), no. 12, 1696-1705. https://doi.org/10.1002/mana.200710176
- B.-Y. Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, 1984. https://doi.org/10.1142/0065
- B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169-188.
- B.-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), no. 2, 323-347. https://doi.org/10.2206/kyushumfs.45.323
- I. Dimitric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 53-65.
- J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1983. https://doi.org/10.1090/cbms/050
- J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in spheres, Math. Nachr. 288 (2015), no. 7, 763-774. https://doi.org/10.1002/mana.201400101
- Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J. (2) 67 (2015), no. 3, 465-479. https://doi.org/10.2748/tmj/1446818561
- R. S. Gupta and A. Sharfuddin, Biharmonic hypersurfaces in Euclidean space E5, J. Geom. 107 (2016), no. 3, 685-705. https://doi.org/10.1007/s00022-015-0310-2
- Th. Hasanis and Th. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169. https://doi.org/10.1002/mana.19951720112
- G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130-144.
- G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 4, 389-402.
- N. Mosadegh and E. Abedi, Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere, Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 2, 161-173. https://doi.org/10.15407/mag16.02.161
- N. Mosadegh, E. Abedi, and M. Ilmakchi, Ricci soliton biharmonic hypersurfaces in the Euclidean space, Ukrain. Mat. Zh. 73 (2021), no. 7, 931-937. https://doi.org/10. 37863/umzh.v73i7.495 https://doi.org/10.37863/umzh.v73i7.495