• Title/Summary/Keyword: Invariant Manifold

Search Result 125, Processing Time 0.025 seconds

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM

  • Ejaz Sabir Lone;Pankaj Pandey
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.223-234
    • /
    • 2023
  • The main purpose of this paper is to study the lightlike hypersurface (M, $\overline{g}$) of cosymplectic space form $\overline{M}$(c). In this paper, we computed the Gauss and Codazzi formulae of (M, $\overline{g}$) of cosymplectic manifold ($\overline{M}$, g). We showed that we can't obtain screen semi-invariant lightlike hypersurface (SCI-LH) of $\overline{M}$(c) with parallel second fundamental form h, parallel screen distribution and c ≠ 0. We showed that if second fundamental form h and local second fundamental form B are parallel, then (M, $\overline{g}$) is totally geodesic. Finally we showed that if (M, $\overline{g}$) is umbilical, then cosymplectic manifold ($\overline{M}$, g) is flat.

p-EQUIVARIANT SPINC-STRUCTURES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that ${\sigma}\;:\;X\;{\rightarrow}\;X$ is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold $\Sigma$ as a fixed point set with ${\Sigma\cdot\Sigma}\;{\geq}\;0\;and\;[\Sigma]\;{\neq}\;0\;{\in}\;H_2(X;\mathbb{Z})$. We show that if _X(\Sigma)\;+\;{\Sigma\cdots\Sigma}\;{\neq}\;0$ then the $Spin^{C}$ bundle $\={P}$ is not $\mathbb{Z}_2-equivariant$, where det $\={P}\;=\;L$ is a basic class with $c_1(L)[\Sigma]\;=\;0$.

NULLITY OF THE LEVI-FORM AND THE ASSOCIATED SUBVARIETIES FOR PSEUDO-CONVEX CR STRUCTURES OF HYPERSURFACE TYPE

  • Chung, Kuerak;Han, Chong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.169-178
    • /
    • 2019
  • Let $M^{2n+1}$, $n{\geq}1$, be a smooth manifold with a pseudoconvex integrable CR structure of hypersurface type. We consider a sequence of CR invariant subsets $M={\mathcal{S}}_0{\supset}{\mathcal{S}}_1{\supset}{\cdots}{\supset}{\mathcal{S}}_n$, where $S_q$ is the set of points where the Levi-form has nullity ${\geq}q$. We prove that ${\mathcal{S}}{_q}^{\prime}s$ are locally given as common zero sets of the coefficients $A_j$, $j=0,1,{\ldots},q-1$, of the characteristic polynomial of the Levi-form. Some sufficient conditions for local existence of complex submanifolds are presented in terms of the coefficients $A_j$.

CONFORMAL HEMI-SLANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Vinay Kumar;Rajendra Prasad;Sandeep Kumar Verma
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.205-221
    • /
    • 2023
  • The main goal of the paper is the introduction of the notion of conformal hemi-slant submersions from almost contact metric manifolds onto Riemannian manifolds. It is a generalization of conformal anti-invariant submersions, conformal semi-invariant submersions and conformal slant submersions. Our main focus is conformal hemi-slant submersion from cosymplectic manifolds. We tend also study the integrability of the distributions involved in the definition of the submersions and the geometry of their leaves. Moreover, we get necessary and sufficient conditions for these submersions to be totally geodesic, and provide some representative examples of conformal hemi-slant submersions.

ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • Amina Alem;Bouazza Kacimi;Mustafa Ozkan
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.300-315
    • /
    • 2023
  • In this article, we deal with the biharmonicity of a vector field X viewed as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic maps, and find the relationship between them and biharmonic vector fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we give examples of vector fields which are proper biharmonic maps on the Gödel universe.

HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS

  • Zaili Yan;Tao Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1607-1620
    • /
    • 2023
  • In this paper, we mainly study the problem of the existence of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain a characterization of a homogeneous curve to be a geodesic. Then we show that every compact connected homogeneous sub-Finsler manifold and Carnot group admits at least one homogeneous geodesic through each point. Finally, we study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie groups. We show that every homogeneous curve in such a metric space is a geodesic. Moreover, we prove that the Alexandrov curvature of the metric space is neither non-positive nor non-negative.

Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem (원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구)

  • Jung, Okchul;Ahn, Sangil;Chung, Daewon;Kim, Eunkyou;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.692-698
    • /
    • 2015
  • This paper represents a trajectory design and analysis technique which uses invariant manifolds of the circular restricted three body problem. Instead of the classical patched conic method based on 2-body problem, the equation of motion and dynamical behavior of spacecraft in the circular restricted 3-body problem are introduced, and the characteristics of Lyapunov orbits near libration points and their invariant manifolds are covered in this paper. The trajectories from/to Lyapunov orbits are numerically generated with invariant manifolds in the Earth-moon system. The trajectories in the Sun-Jupiter system are also analyzed with various initial conditions in the boundary surface. These methods can be effectively applied to interplanetary trajectory designs.

SYMPLECTICITY OF 4-DIMENSIONAL NIL-MANIFOLDS AND SCALAR CURVATURE

  • Kim, Jong-Su;Yun , Gab-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.563-570
    • /
    • 1998
  • We makes an explicit description of compact 4-dimensional nilmanifolds as principal torus bundles and show that they are sysmplectic. We discuss some consequences of this and give in particular a Seibebrg-Witten-invariant proof of a Grovmov-Lawson theorem that if a compact 4-dimensional nilmanifold admits a metric of zero scalar curvature, then it is diffeomorphic to 4-tours, $T^4$.

  • PDF