DOI QR코드

DOI QR Code

ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • Amina Alem (Department of Mathematics, Faculty of Exact Sciences, University of Mascara) ;
  • Bouazza Kacimi (Department of Mathematics, Faculty of Exact Sciences, University of Mascara) ;
  • Mustafa Ozkan (Department of Mathematics, Faculty of Sciences, Gazi University)
  • Received : 2022.11.05
  • Accepted : 2023.01.16
  • Published : 2023.06.01

Abstract

In this article, we deal with the biharmonicity of a vector field X viewed as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic maps, and find the relationship between them and biharmonic vector fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we give examples of vector fields which are proper biharmonic maps on the Gödel universe.

Keywords

References

  1. A. Alem, B. Kacimi, and M. Ozkan, Vector fields which are biharmonic maps, J. Geom. 113 (2022), Article Number 14. 
  2. P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, In: Lond. Math. Soc. Monogr., vol. 29, Oxford University Press, Oxford, 2003. 
  3. G. Calvaruso, Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, J. Geom. Phys. 61 (2011), 498-515.  https://doi.org/10.1016/j.geomphys.2010.11.001
  4. P. Dombrowski, On the geometry of tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.  https://doi.org/10.1515/crll.1962.210.73
  5. Y. Dong and Y. Lin-Ou, Biharmonic submanifolds of pseudo-Riemannian manifolds, J. Geom. Phys. 112 (2017), 252-262.  https://doi.org/10.1016/j.geomphys.2016.11.019
  6. S. Dragomir and D. Perrone, Harmonic Vector fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011. 
  7. J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Amer. Math. Soc., Providence, 1983. 
  8. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), no. 1, 109-160.  https://doi.org/10.2307/2373037
  9. O. Gil-Medrano, Relationship between volume and energy of unit vector fields, Differ. Geo. Appl. 15 (2001), 137-152.  https://doi.org/10.1016/S0926-2245(01)00053-5
  10. O. Gil-Medrano and A. Hurtado, Spacelike energy of timelike unit vector fields on a Lorentzian manifold, J. Geom. Phys. 51 (2004), 82-100.  https://doi.org/10.1016/j.geomphys.2003.09.008
  11. T. Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27. 
  12. G. Jiang, 2-Harmonic maps and their first and second variational formulas, Translated into English by Hajime Urakawa. Note Mat. 28 (2008), no. 1, 209-232. 
  13. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129. 
  14. M. Markellos and H. Urakawa, The biharmonicity of sections of the tangent bundle, Monatsh. Math. 178 (2015), 389-404.  https://doi.org/10.1007/s00605-014-0702-7
  15. M. Markellos and H. Urakawa, Biharmonic vector fields on pseudo-Riemannian manifolds, J. Geom. Phys. 130 (2018), 293-314.  https://doi.org/10.1016/j.geomphys.2018.04.003
  16. O. Nouhaud, Applications harmoniques d'une vari'et'e Riemannienne dans son fibre tangent, C. R. Acad. Sci. Paris S'er. A 284 (1977), 815-818. 
  17. Y. L. Ou and B. Y. Chen, Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry, World Scientific, 2020. 
  18. N. Rahmani and S. Rahmani, Lorentzian geometry of the Heisenberg group, Geom. Dedicata 118 (2006), 133-140.  https://doi.org/10.1007/s10711-005-9030-3
  19. H. Urakawa, Geometry of Biharmonic Mappings: Differential Geometry of Variational Methods, World Scientific, 2018. 
  20. K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.