References
- A. Alem, B. Kacimi, and M. Ozkan, Vector fields which are biharmonic maps, J. Geom. 113 (2022), Article Number 14.
- P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, In: Lond. Math. Soc. Monogr., vol. 29, Oxford University Press, Oxford, 2003.
- G. Calvaruso, Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, J. Geom. Phys. 61 (2011), 498-515. https://doi.org/10.1016/j.geomphys.2010.11.001
- P. Dombrowski, On the geometry of tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
- Y. Dong and Y. Lin-Ou, Biharmonic submanifolds of pseudo-Riemannian manifolds, J. Geom. Phys. 112 (2017), 252-262. https://doi.org/10.1016/j.geomphys.2016.11.019
- S. Dragomir and D. Perrone, Harmonic Vector fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011.
- J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Amer. Math. Soc., Providence, 1983.
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), no. 1, 109-160. https://doi.org/10.2307/2373037
- O. Gil-Medrano, Relationship between volume and energy of unit vector fields, Differ. Geo. Appl. 15 (2001), 137-152. https://doi.org/10.1016/S0926-2245(01)00053-5
- O. Gil-Medrano and A. Hurtado, Spacelike energy of timelike unit vector fields on a Lorentzian manifold, J. Geom. Phys. 51 (2004), 82-100. https://doi.org/10.1016/j.geomphys.2003.09.008
- T. Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27.
- G. Jiang, 2-Harmonic maps and their first and second variational formulas, Translated into English by Hajime Urakawa. Note Mat. 28 (2008), no. 1, 209-232.
- O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
- M. Markellos and H. Urakawa, The biharmonicity of sections of the tangent bundle, Monatsh. Math. 178 (2015), 389-404. https://doi.org/10.1007/s00605-014-0702-7
- M. Markellos and H. Urakawa, Biharmonic vector fields on pseudo-Riemannian manifolds, J. Geom. Phys. 130 (2018), 293-314. https://doi.org/10.1016/j.geomphys.2018.04.003
- O. Nouhaud, Applications harmoniques d'une vari'et'e Riemannienne dans son fibre tangent, C. R. Acad. Sci. Paris S'er. A 284 (1977), 815-818.
- Y. L. Ou and B. Y. Chen, Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry, World Scientific, 2020.
- N. Rahmani and S. Rahmani, Lorentzian geometry of the Heisenberg group, Geom. Dedicata 118 (2006), 133-140. https://doi.org/10.1007/s10711-005-9030-3
- H. Urakawa, Geometry of Biharmonic Mappings: Differential Geometry of Variational Methods, World Scientific, 2018.
- K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.