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SYMPLECTICITY OF 4-DIMENSIONAL
NIL-MANIFOLDS AND SCALAR CURVATURE

JONGsU KiM AND GABJIN YUN

ABSTRACT. We make an explicit description of compact 4-dimensional
nilmanifolds as principal torus bundles and show that they are sym-
plectic. We discuss some consequences of this and give in particular a
Seibebrg-Witten-invariant proof of a Gromov-Lawson theorem that
if a compact 4-dimensional nilmanifold admits a metric of zero scalar
curvature, then it is diffeomorphic to 4-torus, T*.

1. Introduction

For a given compact smooth manifold M™,n > 3, there is no ob-
struction for the existence of a Riemannian metric of negative scalar
curvature (cf. [4], [9], [1]). In fact, Aubin [1] proved that every compact
smooth manifold admits a metric of negative constant scalar curvature.
However, for nonnegative case, there is an obstruction. For example,
Lichnerowicz [10] showed that if M*%* is a compact spin manifold with
nonzero A-genus, A(M) # 0, then M does not admit a metric of posi-
tive scalar curvature.

On the other hand, using minimal surfaces Schoen and Yau [14]
proved that T does not have positive scalar curvature metrics. Shortly
thereafter Gromov and Lawson [7] generalized Lichnerowicz’s Dirac op-
erator approach and proved that for all n, 7™ has no metrics with pos-
itive scalar curvature. Furthermore, they showed that every solvmani-
fold does not admit a metric of positive scalar curvature. Recently new
Seiberg-Witten invariants were successfully used to prove non-existence
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of positive scalar curvature metrics on some (mostly symplectic) man-
ifolds. To understand broad applicability of this new invariant argu-
ment, we wanted to know if one can use the new argument to yield the
same result for the enlargeable manifolds of Gromov and Lawson. In this
paper we have only dealt with nil-manifolds. We do not know if most
of the enlargeable manifolds including solv-manifolds admit symplec-
tic structures, but in any case the Seiberg-Witten-invariant argument
may still help partially in studying the scalar curvarture properties of
enlargeable manifolds.

In section 2 and 3 we will describe explicitly compact 4-dimensional
nilmanifolds. In section 4 we discuss a Gromov-Lawson theorem and a
corollary.

THEOREM 3.4. Any compact 4-dimensional nilmanifold admits a
symplectic structure. Furthermore the first Betti number satisfies by (N)
> 2.

THEOREM 4.2. If a 4-dimensional compact nilmanifold admits a
metric of zero scalar curvature, then it is diffeomorphic to 4-torus, T*.

This implies

COROLLARY 4.3. There is a positive number ¢ > 0 such that if a
4-dimensional compact manifold M admits a metric g satisfying

|Kg‘ : dzam(M, 9)2 <e
where | K 4| is the norm of the sectional curvature K, of g and diam(M, g)

is the diameter of M with respect to g, then a finite cover of M is dif-
feomorphic to T* or M does not have zero scalar curvature metrics.

2. Some properties for nilpotent groups
A solvable group T is called polycyclic if there is a subnormal series
F'=r,>I1 D2 ={1},
where factors I'; /T';4+1 are all infinite cyclic.
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A solvable group is wirtually polycyclic (or almost polycyclic) if it
contains a subgroup of finite index which is polycyclic. The number
of infinite cyclic factors is independent of the choice of finite index
subgroup or subnormal series, and is called the Hirsch length of the
group, denoted by h(L).

For each natural number g > 1, let I'; be the group with presentation

(x,y,2: x2 = zx,yz = 2y, 7Y = 29YI).

Every such group Iy is torsion free and nilpotent of Hirsch length 3. In
fact, I'y can be realized by a nilpotent Lie group of 3 x 3 matrices in
the following form:

1 a -;3
01 b):a,bcel).
0 0 1
110 1 00
The generators 2,y and zcorrespondto | 0 1 0}, 0 1 1] and
0 01 0 0 1

SO =
O = O
= O i

) , respectively. Note that ['y/[I'g,['g] = Z&Z.

The following theorem shows that torsion free nilpotent groups of
Hirsch length 4 are characterized.

THEOREM 2.1 ([8]). LetT be a finitely generated torsion free nilpo-
tent group of Hirsch length h(T') = 4. Then either

(1) T is a free abelian group; or
(2) Cr =Z®Z and T = T'yx Z for some q > 1; or
(3) Cr=Z andT'/Cr =Ty for some q > 1,

where Cr denotes the center of I'.

3. Nilmanifolds and symplectic structures

Let M be a compact 4-dimensional nilmanifold so that there exist a
simply connected nilpotent Lie group N and a lattice I' of N such that
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M = N/T. If T is a free abelian group, then it is easy to see that M is
diffeomorphic to T since A(I") = 4. Assume now I is not a free abelian
group. Then by Theorem 2.1, either I' = I';x Z with Cr 2Z & Z or
I'/Cr =Ty with Cr = Z for some g > 1.

In any case, we will show

ProOPOSITION 3.1. A compact 4-dimensional nilmanifold M is a
principal torus bundle over a lower dimensional nilmanifold.

Proof. We only need to consider the nilpotent groups I' = m; (M)
corresponding to (2) and (3) of the Theorem 2.1. Recall that Cr =
Cn NT from nilpotent group theory [12]. So C/Cr is a Lie group and
a torus. One easily sees that this torus acts freely on M = N/T induced
by left multiplication. Let Q be the quotient manifold (N/T)/(Cn/Cr).
Now let Ny = N/Cy and I'y = T'/Cr. One can check that Nj is
a nilpotent group with lattice I';. We claim that there is a natural
diffeomorphism between @ and N;/T";. First we will show below in
Lemma 3.2 that there is a natural diffeomorphism ®1: @ — N/(I'-Cn)
induced by idy. We define similarly another diffeomorphism ®» : N/(T"-
Cn) — (N/CN)/(F -Cn/CnN). AsT - Cn/Cn & P/(Pﬂ Cn) 2T, we
also have a diffeomorphism &3 : (N/Cy)/(T - Cn/Cn) — N1/T;. Now
®30 Py 0P, is the desired diffeomorphism between @ and N;/T';. This
proves the Proposition. O

LEMMA 3.2. There is a well-defined diffeomorphism
®;:Q = (N/T)/(Cn/Cr) — N/(T-Cn),

induced by idy.

Proof. Let i = nI for n € N be an element of the coset space N/T.
For convenience H denotes Cy/Cr. Note that a point of @ is an orbit
of H action on N/I". We define ®;(7H) to be n(I'- Cy).

We want to show that this is a well-defined map. Suppose that
1 H = roH as orbits for n1,no € N. Then 153 = 13 - h for some heH.
We may write b = h(Cr) € H = Cn/Cr with h € Cy. So iy =ni[ =
hnyT, i.e. h~lno~'ny € T'. This implies that ny~n; € T'- Cy, so that
ni(C-Cn) = na(T - Cn). So ®; is well-defined.
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Next we prove that ®; is one-to-one. If ®,(n; H) = ®,(r2H), then
ng"iny €C-Cpn. Set no~ny =ghforg e, h € Cn. Sony = nagh
and n T = hnggl = hnol' = h(Cr)- (nol'). We write this as 15 = 13- .
Therefore 75 H = i H as orbits and ®, is one-to-one. Obviously ®; is
surjective. Furthermore, ®; and its inverse are clearly smooth maps.[]

We need the following theorem by Fernandez, Gotay and Gray [5,
Theorem 1.1]

THEOREM 3.3. Let a compact 4-dimensional manifold M be a prin-
cipal circle bundle over My which is in turn a principal circle bundle over
a torus T?, so that the first Betti number of M satisfies 2 < by(M) < 4.
Then

(i) if b1 (M) is equal to 2 or 3, then M has symplectic structures

(i) if by(M) = 4 if and only if M is a 4-torus T*.

Proposition 3.1 implies that compact 4-dimensional nilmanifolds sat-
isfy the condition of theorem 3.3. So we have

THEOREM 3.4. Any compact 4-dimensional nilmanifold admits a
symplectic structure and satisfies by (N) > 2.

Suppose now N is a compact 4-dimensional nilmanifold. Then both
the Euler-Poincaré characteristic and the signature of N vanish because
it is parallelizable. Thus, since b;(N) > 2, we have bJ (N) =b; —1 > 1,
where b] denotes the dimension of maximal subspace of 2-forms on
which the intersection form is positive definite.

4. Scalar Curvatures on Nilmanifolds

As we proved nilmanifolds to be symplectic, the following Ohta-Ono
theorem [11] becomes relevant to our discussion. We make a brief sketch
of its proof just enough to explain the difference from Gromov-Lawson’s
approach [7] which uses an estimate from a Dirac equation.

THEOREM 4.1. If a 4-dimensional compact symplectic manifold ad-
mits a metric of positive scalar curvature, then it is diffeomorphic to
either the complex projective plane or a ruled surface up to blow-up
and down.
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Sketch of proof. For by > 2, recall a Taubes theorem [15] that the
Seiberg-Witten invariant for ¢; (K x*l) is nonzero. Then a well known
estimate for smooth solutions of the Seiberg-Witten equation [13, p.
184] forces any scalar curvature to be non-positive.

For by = 1, they use perturbed Seiberg-Witten equations. The wall
crossing contribution and the existence of metrics of positive scalar
curvature yield solutions of perturbed Seiberg-Witten equations. The
solutions admit some estimates or are associated with some pseudo-
holomorphic curves. These estimates often rule out possibilities of some
particular topological manifolds and the pseudo-holomorphic curves
charaterize the symplectic manifolds as stated in the theorem. a

Now we prove that a Gromov-Lawson’s theorem can be handled by
Seiberg-Witten-invariant argument at least for the small class of nil-
manifolds.

THEOREM 4.2. If a 4-dimensional compact nilmanifold admits a
metric of zero scalar curvature, then it is diffeomorphic to 4-torus, T*.

Proof. Suppose a compact 4-dimensional nilmanifold M admits a
metric g of zero scalar curvature. Then g can be either perturbed to
positive scalar-curved metrics or g is ricci-flat {2, Chap 4.F). If g is
ricci-flat on M, then by the Chern-Gauss-Bonnet formula 8m2yx(M) =
Jar IW|2dvol = 0. As the Weyl curvature tensor W vanishes, g is flat.
In this case m; (M) is abelian and M is diffeomorphic to the 4-torus.
So suppose that g can be perturbed to a positive scalar-curved metric.
Now M admits a symplectic structure by Theorem 3.3. By theorem
4.1, M has to be either the complex projective plane or a ruled surface
up to blow-up and down. It is easy to show that nilmanifolds can not
be diffeomorphic to one of these. For instance we compare their fun-
damental groups as follows. As blow-up or blow-down does not change
fundamental groups of complex manifolds, we only need to discuss for
minimal complex surfaces i.e. complex 2-dimensional manifolds which
have no self-intersection —1 holomorphic curves to be blown down. As
b1 > 2, M can not be the complex projective plane. The fundamental
group of a ruled surface is isomorphic to the fundamental group of a
closed orientable real 2-dimensional manifold. But m;(M) of theorem
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2.1 can not be such a group. Therefore g can not be perturbed to a
positive scalar-curved metric. a

A compact smooth manifold is called almost flat if for any € > 0,
ther exists a metric ¢ satisfying

|Kql - diam(M, 9)2 <e

We have the following theorem.

COROLLARY 4.3. There is a positive number ¢ > 0 such that if a
4-dimensional compact manifold M admits a metric satisfying

'Kgl : dzam(M,g)2 <e

then a finite cover of M is diffeomorphic to T* or M does not have zero
scalar curvature metrics.

Proof. By a Gromov theorem ([6]), there is an € > 0 such that if a
compact manifold M admits a metric satisfying

|K,| - diam(M, g)* < ¢,

then M is covered by a nilmanifold. More precisely, there is a sim-
ply connected nilpotent Lie group N, a finitely generated torsion-free
nilpotent subgroup I' of 73 (M) of finite index and a finite cover M of
M such that 71 (M) =T and M = N/T (cf. [3]). Thus, it follows from
Theorem 4.2 that if M is not diffeomorphic to T4, then M does not
have zero scalar curvature metrics and so neither does M. 0
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