Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.
반도체 소자의 배선용 재료로서 사용가능한 합금원소 Mg를 첨가한 Cu(Mg) 박막의 기계 및 전기적 특성 변화를 조사하였다. Cu(2.7at.%Mg) 박막은 열처리를 할 경우 Cu 박막에 비하여 표면거칠기는 약 1/10 정도로 줄고 $SiO_2$와의 접착력도 2배 이상 향상된 결과를 나타내었다. 또한 $300^{\circ}C$이상의 온도에서 10분 이상 열처리를 할 경우 급격한 저항감소를 보여주었는데 이는 Mg 원소의 확산으로 인해 표면 및 계면에서 Mg 산화물이 형성되고 내부에는 순수 Cu와 같이 되었기 때문이다. 경도 및 열응력에 대한 저항력도 Cu박막에 비해 우수한 것으로 나타났으며 열응력으로 인해 Cu 박막에 나타나던 표면 void가 Cu(Mg) 박막에서는 전혀 관찰되지 않았다. EM Test 결과 lifetime은 2.5MA/$cm^2$, $297^[\circ}C$에서 순수 Cu 라인보다 5배 이상 길고 BTS Test 결과 Capacitance-Voltage 그래프의 플랫 밴드 전압(V$_{F}$ )의 shift현상이 Cu에서는 나타났지만 Cu(Mg) 박막에서는 발생하지 않는 우수한 신뢰성을 보여주었다. 누설전류 측정을 통한 $SiO_2$의 파괴시간은 Cu에 비하여 약 3배 이상 길어 합금원소에 의한 확산방지 효과가 있음을 확인하였다.
The current expanding mobile markets incessantly demands small form factor, low power consumption and high aggregate throughput for silicon-level integration such as memory to logic system. One of emerging solution for meeting this high market demand is 3D through silicon stacking (TSS) technology. Main challenges to bring 3D TSS technology to the volume production level are establishing a cost effective supply chain and building a reliable manufacturing processes. In addition, this technology inherently help increase number of IOs and shorten interconnect length. With those benefits, however, potential signal and power integrity risks are also elevated; increase in PDN inductance, channel loss on substrate, crosstalk and parasitic capacitance. This paper will report recent progress of wide IO memory to high count TSV logic device assembly development work. 28 nm node TSV test vehicles were fabricated by the foundry and assembled. Successful integration of memory wide IO chip with less than a millimeter package thickness form factor was achieved. For this successful integration, we discussed potential signal and power integrity challenges. This report demonstrated functional wide IO memory to 28 nm logic device assembly using 3D package architecture with such a thin form factor.
Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance (RC) delay나 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 SiO2와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 SiO2 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200 도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 SiO2와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장 했다. 이는 V의 oxide formation nergyrk Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, V+5 이온 반경이 Mn+2 이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.
현재까지 연결선을 타이밍(timing) 관점에서 해석하려는 시도들은 많았지만, 전력 소모의 관점에서 해석하려는 시도는 많지 않았다. 그러나 지금은 연결선의 저항 성분과 신호의 상승 시간이 점차 증가하는 추세에 따라 회로 연결선에서의 전력 소모가 증가하고 있는 시점이다. 특히, 클럭 신호선의 경우 칩 전체 전력 소모 중 30% 이상을 차지하고 있다. 따라서 회로 연결선에서의 전력 소모를 효과적으로 계산하는 방법이 필요하며, 본 논문에서는 회로 연결선의 동적 전력 소모를 계산하는 간단하면서도 정확한 방법을 제시하고자 한다. 사이즈가 큰 연결선의 동적 전력 소모를 계산하기 위한 축소 모형을 제안하고, 이 축소모형을 구성하는 방법을 제시한다. 제안한 축소 모형의 해석을 통해 연결선 전체의 동적 전력 소모를 근사할 수 있음을 보이고, 이를 간단히 계산하는 방법을 제안 하고자 한다. 노드 수 100∼1000개까지 RC 회로에 대해 제안한 방법을 적용한 결과 연결선의 전력 소모는 HSPICE에 비해 1.86%의 평균 상대 오차 및 9.82%의 최대 상대 오차를 보였다.
본 논문은 이상적인 균일한 무손실 유전체를 갖는 일반적인 3차원 연결선 구조에서의 커패시턴스 추출 시, 널리 사용되는 일차 대조법(First-order collocation) 외에 고차 구적법을 결합하여 사용함으로써 정확성을 제고하고, 반복적 행렬-벡터의 곱을 효율적으로 수행하기 위한 알고리즘을 제안한다. 제안된 기법은 연결선에서 전기적 성질이 집중되어 있는 코너나 비아를 포함한 경우에 일차 대조법 대신에 구적법을 이용하여 고차로 근사함으로써 정확성을 보장한다. 또한, 이 기법은 경계 요소 기법에서 행렬의 대부분이 수치적으로 저차 계수(low rank)를 이룬다는 회로상의 전자기적 성질을 이용하여 모형차수를 축소함으로써 효율성을 증진한다. 이 기법은 SVD(Singular Value Decomposition)에 기반한 저차 계수 행렬 축소 기법과 신속한 행렬의 곱셈 연산을 위한 Krylov-subspace 차수 축소 기법인 Gram-Schmidt 알고리즘을 도입함으로써 효율적인 연산을 수행할 수 있다. 제안된 방법은 허용 오차 범위 내에서 효율적으로 행렬-벡터의 곱셈을 수행하며, 이를 기존의 연구에서 제시된 기법과의 성능 평가를 통하여 보인다.
본 논문은 다양한 회로 연결선 모형 중에서 연결선 변수 및 동작 환경에 다라 최적 모형을 쉽게 선택할 수 있는 기준을 제시하고자 한다. 이를 위하여 먼저 연결선의 총 저항, 인덕턴스, 커패시턴스 값 및 신호의 동작주파수를 기반으로 정량적 모형화 오차 분석에 근거하여 인덕턴스의 영향을 고려하여 모형화해야 하는 RLC-class 모형 영역과 그럴 필요가 없는 RC-class모형 영역으로 분할하는 방법을 제시한다. 칩 내부 연결선의 대부분을 차지하는 RC-class 회로 모형은 모형 차수 축소 기법을 통하여 효율적으로 해석될 수 있다. RLC-class 회로 모형은 주어진 허용 모형화 오차 및 전기 변수에 따라 ILC(Iterative Ladder Circuit) 거시 모형, MC(Method of Characteristics)거시 모형 및 상태 기반 컨벌루션(comvolution) 방법 중에서 최적인 모형을 선정하게 된다. 본 논문은 SPICE류의 범용 회로 시뮬레이션 앨고리즘을 가정할 때, 세부 모형들의 시뮬레이션 비용을 감안하고서 최적 모형을 찾는 영역 구성도를 제시한다. 본 논문에서 제시하는 거시모형화 방법은 회로의 수동성을 유지하며, 따라서 무조건적 안정도를 보장할 수 있다.
최근 낮은 기가비트급 광통신 집적회로의 구현에 sub-micron CMOS 공정이 적용되고 있다. 본 논문에서는 표준 0.35mm CMOS 공정을 이용하여 4채널 3.125Gb/s 차동 전치증폭기 어레이를 구현하였다. 설계한 각 채널의 전치증폭기는 차동구조로 regulated cascode (RGC) 설계 기법을 이용하였고, 액티브 인덕터를 이용한 인덕티브 피킹 기술을 이용하여 대역폭 확장을 하였다 Post-layout 시뮬레이션 결과, 각 채널 당 59.3dBW의 트랜스임피던스 이득, 0.5pF 기생 포토다이오드 캐패시턴스에 대해 2.450Hz의 -3dB 대역폭, 그리고 18.4pA/sqrt(Hz)의 평균 노이즈 전류 스펙트럼 밀도를 보였다. 전치증폭기 어레이의 공급전원은 단일전압 3.3V 이고, 전력소모는 92mw이다. 이는 4채널 RGC 전치증폭기 어레이가 저전력, 초고속 광인터컨넥트 분야에 적합함을 보여준다.
본 논문은 적층된 칩 사이의 3차원 대역 통과 무선 통신 인터페이스를 제안한다. 제안 방법은 적층된 칩 사이의 작은 커패시턴스를 포함한 3차원 공진기를 이용하여 자주 주파수 발진기(free running oscillator)를 구성하고, 이 발진기를 진폭 변조하여 추가적인 정합회로 없이 수신단에서 포락선 검파를 통해 신호를 검출한다. 제안 방법을 검증하기 위해 110 nm CMOS 공정을 사용하여 송수신 칩을 설계하고, 제작하여 50 ${\mu}m$ 두께의 칩 사이에 2 Gb/s의 데이터 전송 속도를 확인하였다. 제작한 칩은 동작전압 1.2 V를 사용하며, 송수신 칩을 합하여 4.32 mW의 전력을 소모한다. 칩의 크기는 송신단은 0.045 $mm^2$이고, 수신단은 0.029 $mm^2$이다.
Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance delay와 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 $SiO_2$와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 $SiO_2$ 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 $SiO_2$와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장했다. 이는 V의 oxide formation energy가 Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, $V^{+5}$이온 반경이 $Mn^{+2}$이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.