Dynamic Power Estimation Method of VLSI Interconnects

VLSI 회로 연결선의 동적 전력 소모 계산법

  • Published : 2004.02.01

Abstract

Up to the present, there have been many works to analyze interconnects on timing aspects, while less works have been done on power aspects. As resistance of interconnects and rise time of signals increase, power consumption associated with interconnects is ever-increasing. In case of clock trees, particularly power consumption associated with interconnects is over 30% of total power consumption. Hence, an efficient method to compute power consumption of interconnects is necessary and in this paper we propose a simple yet accurate method to estimate dynamic power consumption of interconnects. We propose a new reduced-order model to estimate power consumption of large interconnects. Through the proposed model which is directly derived from total capacitance and resistance of interconnects, we show that the dynamic power consumption of whole interconnects can be approximated, and propose an analytical method to compute the power consumption. The results applying the proposed method to various RC networks show that average relative error is 1.86% and maximum relative error is 9.82% in comparison with HSPICE results.

현재까지 연결선을 타이밍(timing) 관점에서 해석하려는 시도들은 많았지만, 전력 소모의 관점에서 해석하려는 시도는 많지 않았다. 그러나 지금은 연결선의 저항 성분과 신호의 상승 시간이 점차 증가하는 추세에 따라 회로 연결선에서의 전력 소모가 증가하고 있는 시점이다. 특히, 클럭 신호선의 경우 칩 전체 전력 소모 중 30% 이상을 차지하고 있다. 따라서 회로 연결선에서의 전력 소모를 효과적으로 계산하는 방법이 필요하며, 본 논문에서는 회로 연결선의 동적 전력 소모를 계산하는 간단하면서도 정확한 방법을 제시하고자 한다. 사이즈가 큰 연결선의 동적 전력 소모를 계산하기 위한 축소 모형을 제안하고, 이 축소모형을 구성하는 방법을 제시한다. 제안한 축소 모형의 해석을 통해 연결선 전체의 동적 전력 소모를 근사할 수 있음을 보이고, 이를 간단히 계산하는 방법을 제안 하고자 한다. 노드 수 100∼1000개까지 RC 회로에 대해 제안한 방법을 적용한 결과 연결선의 전력 소모는 HSPICE에 비해 1.86%의 평균 상대 오차 및 9.82%의 최대 상대 오차를 보였다.

Keywords

References

  1. J. Cong, 'An Interconnect-Centric Design Flow for Nanometer Technologies,' IEEE Proc., vol. 89, pp. 505-528, Apr. 2001 https://doi.org/10.1109/5.920581
  2. S. Borkar, 'Low Power Design Challenges for The Decade,' Proc. IEEE ASP-DAC, 2001 https://doi.org/10.1109/ASPDAC.2001.913321
  3. Y. Shin and T. sakurai, 'Power Distribution Analysis of VLSI Interconnects Using Model Order Reduction,' IEEE Tran. Computer-Aided Design, vol 21, pp. 739-745, June 2002 https://doi.org/10.1109/TCAD.2002.1004318
  4. D. Lur and C. Sevensson, 'Power Consumption Estimation in CMOS VLSI Chips,' IEEE Journal of Solid-State Circuits, vol. 29, pp. 663-670, June 1994 https://doi.org/10.1109/4.293111
  5. Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson, 'Power Considerations in the Design of the Alpha 21264 Microprocessor,' in Proc. IEEE DAC, June 1998
  6. M. Celik, L. T. Pileggi, and A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, 2002
  7. F. Caignet, S. Delmas-Bendhia, and E. Sicard, 'The Challenge of Signal Intergrity in Deep-Submicrometer CMOS Technology,' IEEE proc., vol. 89, no. 4, Apr. 2001 https://doi.org/10.1109/5.920583
  8. M. Celik and L. T. Pileggi, 'Metrics and Bounds for phase delay and signal Attenuation in RC(L) Clock Trees,' IEEE Trans. Computer-Aided Design, vol.18, Mar. 1999 https://doi.org/10.1109/43.748159
  9. Howard H. Chen;J. Scott Neely Interconnect and Circuit Modeling Technique for Full-Chip Power Supply Noise Analysis IEEE Tran. Comp. https://doi.org/10.1109/96.704931
  10. J. M. Rabaey, Digital Integrated Circuits, A Design Perspective, Prentice Hall, Inc., New Jersey, 2003
  11. T. Uchino and J. Cong, 'An Interconnect Energy Model Considering Coupling Effects,' in Proc. IEEE DAC, June 2001
  12. P. Heydari and M. Pedram, 'Interconnect Energy Dissipation in High-Speed ULSI Circuit,'in Proc. IEEE Int. Conf. VLSID, 2002 https://doi.org/10.1109/TCSI.2004.832738
  13. P. R. O'Brien and T. L. Savarino, 'Modeling the Driving-Point Characteristic of Resistive Interconnect for Accurate Delay Estimation,' in Proc. IEEE ICCAD, 1989 https://doi.org/10.1109/ICCAD.1989.77002
  14. S. Y. Kim, Modeling and Analysis of VLSI Interconnects, Sigma Press, 1999
  15. H. B. Bakoglu, Circuit, Interconnections, and Packaging for VLSI, Addison Wesley, 1990
  16. N. Gopal, 'Fast Evaluation of VLSI Interconnect Structures Using Moment-Maching Methods,' Ph.D. Thesis, Univ of Texas at Austin, Dec. 1992
  17. L. T. Pileggi and R. A. Rohrer, 'Asymptotic Waveform Evaluation for Timing Analysis,' IEEE Trans. Computer-Aided Design, vol. 9, 1990 https://doi.org/10.1109/43.45867
  18. A. Odabasioglu, M. Celik, and L. T. Pileggi, 'PRIMA : Passive Reduced-Order Interconnect Macromodeling Algorithm,' IEEE Trans. Computer-Aided Design, vol. 18, no. 8, pp. 645-654, Aug. 1998 https://doi.org/10.1109/43.712097
  19. E. Acar, A.Odabasioglu, M.Celik, and L. T. Pileggi, 'S2P : A Stable 2-pole RC Delay and Coupling Noise Metric,' in Proc. Great Lakes Symposium VLSI, 1999 https://doi.org/10.1109/GLSV.1999.757377
  20. W. K. Kal and S. Y. Kim, 'An Analytical Calculation Method for Delay Time of RC-class Interconnect,' in Proc. IEEE ASP-DAC, 2000 https://doi.org/10.1109/ASPDAC.2000.835143