• 제목/요약/키워드: Integral equations

검색결과 749건 처리시간 0.029초

The existence and uniqueness of fuzzy solutions for semilinear fuzzy integrodifferential equations using integral contractor

  • Lee, Bu-Young;Kwun, Young-Chel;Ahn, Young-Chel;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.339-342
    • /
    • 2009
  • In this paper, we investigate the existence and uniqueness of fuzzy solutions for semilinear fuzzy integrodifferential equations using integral contractor. The notion of 'bounded integral contractor', introduced by Altman[1], is weaker than Lipschitz condition.

두직교이방성 평판을 접착한 구조물의 응력화대변수 (Stress intensity factors in adhesive bonded orthotropic structures)

  • 노희승;홍창선
    • 대한기계학회논문집
    • /
    • 제5권3호
    • /
    • pp.217-222
    • /
    • 1981
  • The stress analysis of two-orthotropic layer, adhesively bonded structures is considered. An orthotropic plate has a through-crack of finite length and is adhesively bounded by a sound orthotropic plate. The problem is resuced to a pair of Fredholm integral equations ofthe second kind. Using a numerical integration scheme to evaluate the intgrals, The integral equations are reduced to a system of algebraic equations. By solving these equations some numerical results for stress intensity factors are presented for various crack lengths.

ON SOME NEW NONLINEAR DELAY AND WEAKLY SINGULAR INTEGRAL INEQUALITIES

  • Ma, Qing-Hua;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.877-888
    • /
    • 2008
  • This paper deals with some new nonlinear delay and weakly singular integral inequalities of Gronwall-Bellman type. These results generalize the inequalities discussed by Xiang and Kuang [19]. Several other inequalities proved by $Medve{\check{d}}$ [15] and Ou-Iang [17] follow as special cases of this paper. This work can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. A modification of the Ou-Iang type inequality with delay is also treated in this paper.

  • PDF

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권2호
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

AN APPROXIMATE SOLUTION OF AN INTEGRAL EQUATION BY WAVELETS

  • SHIM HONG TAE;PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.709-717
    • /
    • 2005
  • Integral equations occur naturally in many fields of mechanics and mathematical physics. We consider the Fredholm integral equation of the first kind.In this paper we are interested in integral equation of convolution type. We give approximate solution by Meyer wavelets

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석 (A spectral domain analysis of microstrip lines using a residue theorem)

  • 문병귀;진경수;박병우
    • 전자공학회논문지D
    • /
    • 제35D권1호
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF

시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석 (Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral)

  • 이성희;심우진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

ON SOLUTIONS OF VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Thabet, A.A.;Alim, A.Hadi
    • Kyungpook Mathematical Journal
    • /
    • 제29권2호
    • /
    • pp.141-147
    • /
    • 1989
  • The existence and uniqueness of solutions of nonlinear Volterra-Fred-holm integral equations of the more general type are investigated. The main tool employed in our analysis is the method of successive approximation based on the general idea of T.Wazewski.

  • PDF

SOME CLASSES OF INTEGRAL EQUATIONS OF CONVOLUTIONS-PAIR GENERATED BY THE KONTOROVICH-LEBEDEV, LAPLACE AND FOURIER TRANSFORMS

  • Tuan, Trinh
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.485-494
    • /
    • 2021
  • In this article, we prove the existence of a solution to some classes of integral equations of generalized convolution type generated by the Kontorovich-Lebedev (K) transform, the Laplace (𝓛) transform and the Fourier (F) transform in some appropriate function spaces and represent it in a closed form.