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Abstract

In this paper, we investigate the existence and uniqueness of fuzzy solutions for semilinear fuzzy integrodifferential
equations using integral contractor. The notion of ’bounded integral contractor’, introduced by Altman [1], is weaker than
Lipschitz condition.
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1. Introduction

Many authors have studied several concepts of fuzzy
systems using Lipschitz condition. Kaleva [4] studied the
existence and uniqueness of solution for the fuzzy differ-
ential equation on En where En is normal, convex, upper
semicontinuous and compactly supported fuzzy sets in Rn.
Seikkala [8] proved the existence and uniqueness of fuzzy
solution for the following equation:

ẋ(t) = f(t, x(t)) , x(0) = x0,

where f is a continuous mapping from R+×R into R and
x0 is a fuzzy number in E1. Diamond and Kloeden [3]
proved the fuzzy optimal control for the following system:

ẋ(t) = a(t)x(t) + u(t), x(0) = x0,

where x(·), u(·) are nonempty compact interval-valued
functions on E1. Kwun and Park [5] proved the exis-
tence of fuzzy optimal control for the nonlinear fuzzy dif-
ferential system with nonlocal initial condition in E1

N using
by Kuhn-Tucker theorems. Balasubramaniam and Mural-
isankar [2] proved the existence and uniqueness of fuzzy
solutions for the semilinear fuzzy integrodifferential equa-
tion with nonlocal initial condition. Recently, Park, Park
and Kwun [7] find the sufficient condition of nonlocal
controllability for the semilinear fuzzy integrodifferential
equation with nonlocal initial condition.

In this paper, we study the existence and uniqueness of
solutions for the semilinear fuzzy integrodifferential equa-

tions by replacing Lipschitz condition with integral con-
tractor condition

dx(t)
dt

= A

[
x(t) +

∫ t

0

G(t− s)x(s)ds

]
(1)

+f(t, x(t)), t ∈ I = [0, T ],
x(0) = x0 ∈ EN , (2)

where A : I → EN is a fuzzy coefficient, EN is the set
of all upper semicontinuous convex normal fuzzy numbers
with bounded α-level intervals, f : I × EN → EN is
nonlinear continuous functions, G(t) is n × n continuous
matrix such that dG(t)x

dt is continuous for x ∈ EN and t ∈ I
with ‖G(t)‖ ≤ k, k > 0.

2. Preliminaries

A fuzzy subset of Rn is defined in terms of member-
ship function which assigns to each point x ∈ Rn a grade
of membership in the fuzzy set. Such a membership func-
tion m : Rn → [0, 1] is used synonymously to denote the
corresponding fuzzy set. We shall restrict attention here to
the normal fuzzy sets which satisfy

Assumption 1. m maps Rn onto [0, 1].
Assumption 2. [m]0 is a bounded subset of Rn.
Assumption 3. m is upper semicontinuous.
Assumption 4. m is fuzzy convex.

We denote by En the space of all fuzzy subsets m of
Rn which satisfy assumptions 1-4; that is, normal, fuzzy
convex and upper semicontinuous fuzzy sets with bounded
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supports. In particular, we denoted by E1 the space of all
fuzzy subsets m of R which satisfy assumptions 1-4 [3].

A fuzzy number a in real line R is a fuzzy set charac-
terized by a membership function ma as ma : R → [0, 1].
A fuzzy number a is expressed as a =

∫
x∈R

ma(x)/x,
with the understanding that ma(x) ∈ [0, 1] represent the
grade of membership of x in a and

∫
denotes the union of

ma(x)/x’s [6].

Let EN be the set of all upper semicontinuous convex
normal fuzzy number with bounded α-level intervals. This
means that if a ∈ EN then the α-level set

[a]α = {x ∈ R : ma(x) ≥ α, 0 < α ≤ 1}

is a closed bounded interval which we denote by

[a]α = [aα
l , aα

r ]

and there exists a t0 ∈ R such that a(t0) = 1 [5].
The support Γa of a fuzzy number a is defined, as a

special case of level set, by the following

Γa = {x ∈ R : ma(x) > 0}.

Two fuzzy numbers a and b are called equal a = b, if
ma(x) = mb(x) for all x ∈ R. It follows that

a = b ⇔ [a]α = [b]α for all α ∈ (0, 1].

A fuzzy number a may be decomposed into its level
sets through the resolution identity

a =
∫ 1

0

α[a]α,

where α[a]α is the product of a scalar α with the set [a]α

and
∫

is the union of [a]α’s with α ranging from 0 to 1.

We denote the suprimum metric d∞ on En and the
suprimum metric H1 on C(I : En).

Definition 1. Let a, b ∈ En.

d∞(a, b) = sup{dH([a]α, [b]α) : α ∈ (0, 1]},

where dH is the Hausdorff distance.

Definition 2. Let x, y ∈ C(I : En)

H1(x, y) = sup{d∞(x(t), y(t)) : t ∈ I}.

Let I be a real interval. A mapping x : I → EN is
called a fuzzy process. We denote

[x(t)]α = [xα
l (t), xα

r (t)], t ∈ I, 0 < α ≤ 1.

The derivative x′(t) of a fuzzy process x is defined by

[x′(t)]α = [(xα
l )′(t), (xα

r )′(t)], 0 < α ≤ 1

provided that is equation defines a fuzzy x′(t) ∈ EN .
The fuzzy integral∫ b

a

x(t)dt, a, b ∈ I

is defined by[∫ b

a

x(t)dt

]α

=

[∫ b

a

xα
l (t)dt,

∫ b

a

xα
r (t)dt

]

provided that the Lebesgue integrals on the right exist.

Definition 3. [2] The fuzzy process x : I → EN is
a solution of equations (1)-(2) without the inhomogeneous
term if and only if

(ẋα
l )(t) = min

{
Aα

i (t)
[
xα

j (t)

+
∫ t

0

G(t− s)xα
j (s)ds

]
, i, j = l, r

}
,

(ẋα
r )(t) = max

{
Aα

i (t)
[
xα

j (t)

+
∫ t

0

G(t− s)xα
j (s)ds

]
, i, j = l, r

}
,

and

(xα
l )(0) = xα

0l, (xα
r )(0) = xα

0r.

Now we assume the following:
(H1) S(t) is a fuzzy number satisfying, for y ∈ EN

and S′(t)y ∈ C1(I : EN ) ∩ C(I : EN ), the equation

d

dt
S(t)y = A

[
S(t)y +

∫ t

0

G(t− s)S(s)yds

]
= S(t)Ay +

∫ t

0

S(t− s)AG(s)yds, t ∈ I,

such that

[S(t)]α = [Sα
l (t), Sα

r (t)],

and Sα
i (t) (i = l, r) is continuous. That is, there exists a

constant c > 0 such that |Sα
i (t)| ≤ c for all t ∈ I .
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3. Existence and Uniqueness

In this section, we consider the existence and unique-
ness of fuzzy solution for the equations (1)-(2).

The equations (1)-(2) is related to the following fuzzy
integral equation:

x(t) = S(t)x0 +
∫ t

0

S(t− s)f(s, x(s))ds, (3)

where S(t) is satisfy (H1).

Definition 4. Suppose Γ : [0, T ] × EN → EN is
a bounded continuous function and there exists a positive
number k such that for any x and y in C([0, T ] : EN ) and
t ∈ [0, T ]

dH

([
f(t, x(t) + y(t) +

∫ t

0

S(t− s)Γ(s, x(s))

×y(s)ds)− f(t, x(t))− Γ(t, x(t))y(t)
]α

, {0}
)

≤ kdH([y(t)]α, {0}). (4)

Then we say that f(t, x(t)) has a bounded integral contrac-
tor {I +

∫
SΓ} with respect to S(t− s).

Remark If Γ ≡ 0, the condition (4) reduces to the Lip-
schitz condition. It should be remarked here that the Lip-
schitz condition gives rise to a unique solution, where as
the condition (4) does not yield, in general, to a unique so-
lution. Therefore, we define the regularity of integral con-
tractors which ensures the uniqueness of the solution.

Definition 5. A bounded integral contractor Γ is said to
be regular if the integral equation

y(t) +
∫ t

0

S(t− s)Γ(s, x(s))y(s)ds = z(t) (5)

has a solution in C([0, T ] : EN ) for any x, z ∈ C([0, T ] :
EN ).

Now we prove the existence and uniqueness of solution
of (3) using the idea of integral contractors.

Theorem 1. Let T > 0 and hypothesis (H) hold and
the nonlinear function f(t, x(t)) has a regular integral con-
tractor. Then for every x0 ∈ EN , the equation (3) has a
unique fuzzy solution x ∈ C([0, T ] : EN ).

Proof. The main idea is to use the following iteration
procedure to define

x0(t) = S(t)x0, (6)

xn+1(t) = xn(t)−
[
yn(t) (7)

+
∫ t

0

S(t− s)Γ(s, xn(s))yn(s)ds
]
, n ≥ 0

yn(t) = xn(t)−
∫ t

0

S(t− s)f(s, xn(s))ds− x0(t). (8)

Hence, it follows from (7) and (8) that

yn+1(t) = xn(t)− yn(t)

−
∫ t

0

S(t− s)Γ(s, xn(s))ds

−
∫ t

0

S(t− s)f(s, xn+1(s))ds− x0(t)

=
∫ t

0

S(t− s)[f(s, xn(s))− f(s, xn+1(s))

−Γ(s, xn(s))yn(s)]ds

= −
∫ t

0

S(t− s)
[
f
(
s, xn(s)− yn(s)

−
∫ s

0

S(s− τ)Γ(τ, xn(τ))yn(τ)dτ
)

−f(s, xn(s)) + Γ(s, xn(s))yn(s)
]
ds

Now apply to Definition 4 with xn = x and yn = −y,
we have that

dH([yn+1(t)]α, {0}) ≤ ck

∫ t

0

dH([yn(s)]α, {0})ds.

We can derive inductively the following inequality

dH([yn+1(t)]α, {0})

≤ (ck)n

n!

∫ t

0

sndH([S(t− s)f(s, x0(s))]α, {0})ds.

Therefore, we get

dH([yn+1(t)]α, {0}) ≤ β(ckT )ncT

(n + 1)!
(9)

where β = dH([f(t, x0(t))]α, {0}), t ∈ [0, T ]. Hence
yn(·) converges to 0 in C([0, T ] : EN ), as n →∞.

From (7) we have

xn+1(t)− xn(t)

= −yn(t)−
∫ t

0

S(t− s)Γ(s, xn(s))yn(s)ds.

Using (9) we have the estimate

dH([xn+1(t)− xn(t)]α, {0}) ≤ β(ckT )ncT

(n + 1)!
(1 + γcT )

where γ = dH([Γ(t, x(t))]α, {0}), t ∈ [0, T ]. Therefore
xn converges to x∗ in C[0, T ] : EN ) and by (8) we have
that

x∗(t) = S(t)x0 +
∫ t

0

S(t− s)f(s, x∗(s))ds,
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That is, x∗ is a solution of (3).
We now show the uniqueness of solutions by the regu-

larity of integral contractor. Let x1 and x2 be two solutions
of (3) with a given x0. By the regularity condition (5) with
x = x1 and z = x2 − x1, there exists y ∈ C[0, T ] : EN )
such that

y(t) +
∫ t

0

S(t− s)Γ(s, x1(s))y(s)ds (10)

= x2(t)− x1(t).

By (4) we have

dH

([
f(t, x1(t) + y(t) +

∫ t

0

S(t− s)Γ(s, x1(s))

×y(s)ds)− f(t, x1(t))− Γ(t, x1(t))y(t)
]α

, {0}
)

≤ kdH([y(t)]α, {0}).

By (10) we get

dH([f(t, x2(t))− f(t, x1(t))
−Γ(t, x1(t))y(t)]α, {0})

≤ kdH([y(t)]α, {0}). (11)

Again from (10) and (3) we have

y(t) = x2(t)− x1(t)−
∫ t

0

S(t− s)Γ(s, x1(s))y(s)ds

=
∫ t

0

S(t− s)[f(s, x2(s))− f(s, x1(s))

−Γ(s, x1(s))y(s)]ds

Now (11) implies

dH([y(t)]α, {0}) ≤ ck

∫ t

0

dH([y(s)]α, {0})ds.

Then by using Grownwall’s inequality we get
dH([y(t)]α, {0}) = 0. Therefore, by (10) we have that
x1 = x2.
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