• Title/Summary/Keyword: Information bit selection

Search Result 155, Processing Time 0.024 seconds

Error Performance of Spatial-temporal Combining-based Spatial Multiplexing UWB Systems Using Transmit Antenna Selection

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • This paper applies transmit antenna selection algorithms to spatial-temporal combining-based spatial multiplexing (SM) ultra-wideband (UWB) systems. The employed criterion is based on the largest minimum output signal-to-noise ratio of the multiplexed streams. It is shown via simulations that the bit error rate (BER) performance of the SM UWB systems based on the two-dimensional Rake receiver is significantly improved by antenna diversity through transmit antenna selection on a log-normal multipath fading channel. When the transmit antenna diversity through antenna selection is exploited in the SM UWB systems, the BER performance of the spatial-temporal combining-based zero-forcing (ZF) receiver is also compared with that of the ZF detector followed by the Rake receiver.

On the Code Selection of a Multicode DS/CDMA System for a High Data Rate Transmission

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • The effect of code selection for a multicode DS/CDMA system is evaluated for a high deta rate transmission, The performance is evaluated in terms of bit error and outage probabilities. The multipath fading channel is modeled as a Nakagami-m distribution which has been known to be appropriate to model the multipath fading in urban as well as indoor channels. From simulation results, it is shown that the concatenated sequence of Walsh code and Gold sequence is most promising among many code selections. The considerations in this paper can be applied to the next-generation mobile communication systems such as IMT-2000 which requires high bit rate transmissions.

  • PDF

Predicting Package Chip Quality Through Fail Bit Count Data from the Probe Test (프로브 검사 결점 수 데이터를 이용한 패키지 칩 품질 예측 방법론)

  • Park, Jin Soo;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.408-413
    • /
    • 2015
  • The quality prediction of the semiconductor industry has been widely recognized as important and critical for quality improvement and productivity enhancement. The main objective of this paper is to predict the final quality of semiconductor chips based on fail bit count information obtained from probe tests. Our proposed method consists of solving the data imbalance problem, non-parametric variable selection, and adjusting the parameters of the model. We demonstrate the usefulness and applicability of the proposed procedure using a real data from a semiconductor manufacturing.

Design Methodology of Analog Circuits for a CMOS Stereo 16-bit Δ$\Sigma$ DAC (CMOS Stereo 16-bit Δ$\Sigma$ DAC Analog단의 설계기법)

  • 김상호;채정석;박영진;손영철;조상준;김상민;김동명;김대정
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.93-96
    • /
    • 2001
  • A design methodology of analog circuits for a CMOS stereo 16-bit Δ$\Sigma$ DAC which are suitable for the digital audio applications is described. The limitations of Δ$\Sigma$ DAC exist in the performance of the 1-bit DAC and that of the smoothing filter. The proposed architecture for analog circuits contains the buffer between the digital modulator and the following analog stage and adopts the SCF (switched capacitor filter) and DSC (differential-to-single converter) scheme. In this paper, a guide line for the selection of the filter type for the SCF design in the Δ$\Sigma$ DAC is suggested through the analytical approaches.

  • PDF

Efficient Rate Control by Fast Adaptive Mode Selection

  • Ryu, Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4E
    • /
    • pp.43-50
    • /
    • 1999
  • A fast converging coding algorithm that adaptively selects the modes of macroblocks is introduced. For a given frame, the optimal modes are selected based on the decision curves that minimize the overall distortion at a given bit rate. The method proposed in this paper is different from the conventional ones in that it does not manipulate the quantizer to meet the target bit rate but it satisfies the target bit rate by finding optimal modes of macroblocks which result consistent visual quality. Lagrange multiplier of the unconstrained cost function is controlled to trigger decision curves to generate appropriate modes to meet bit rate and the curve is obtained by utilizing simulated annealing optimization technique. The algorithm is implemented within H.261 video codec and simulation results demonstrate superior visual quality.

  • PDF

Adaptive Importance Channel Selection for Perceptual Image Compression

  • He, Yifan;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3823-3840
    • /
    • 2020
  • Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compression model, the encoder simply sends the features of last layer to the decoder, which cannot allocate bits over different spatial regions in an efficient way. Besides, these methods do not fully exploit the contextual information under different receptive fields for better reconstruction performance. In this paper, to solve these issues, a novel auto-encoder model is designed for image compression, which can effectively transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, we conduct the multiply operation on the generated importance mask and the features of the last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an additional novel perceptual loss function for more accurate image details. Extensive experiments demonstrated that the proposed model can achieve significant superiority compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, our model shows better performance than the state-of-the-art convolutional neural network (CNN)-based image compression methods in terms of PSNR.

Local Linear Transform and New Features of Histogram Characteristic Functions for Steganalysis of Least Significant Bit Matching Steganography

  • Zheng, Ergong;Ping, Xijian;Zhang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.840-855
    • /
    • 2011
  • In the context of additive noise steganography model, we propose a method to detect least significant bit (LSB) matching steganography in grayscale images. Images are decomposed into detail sub-bands with local linear transform (LLT) masks which are sensitive to embedding. Novel normalized characteristic function features weighted by a bank of band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched by using a threshold selection algorithm. Extensive experiments are performed on four diverse uncompressed image databases. In comparison with other well-known feature sets, the proposed feature set performs the best under most circumstances.

Opportunistic Multiple Relay Selection for Two-Way Relay Networks with Outdated Channel State Information

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.389-405
    • /
    • 2014
  • Outdated Channel State Information (CSI) was proved to have negative effect on performance in two-way relay networks. The diversity order of widely used opportunistic relay selection (ORS) was degraded to unity in networks with outdated CSI. This paper proposed a multiple relay selection scheme for amplify-and-forward (AF) based two-way relay networks (TWRN) with outdated CSI. In this scheme, two sources exchange information through more than one relays. We firstly select N best relays out of all candidate relays with respect to signal-noise ratio (SNR). Then, the ratios of the SNRs on the rest of the candidate relays to that of the Nth highest SNR are tested against a normalized threshold ${\mu}{\in}[0,1]$, and only those relays passing this test are selected in addition to the N best relays. Expressions of outage probability, average bit error rate (BER) and ergodic channel capacity were obtained in closed-form for the proposed scheme. Numerical results and Simulations verified our theoretical analyses, and showed that the proposed scheme had significant gains comparing with conventional ORS.

Memory Reduction Method of DIT-based IFFT Bit-Reversal (DIT 기반 IFFT의 Bit-Reversal 메모리 감소 기법)

  • Kim, Jun-Ho;Piao, Zheyan;Cho, Kyung-Ju;Chung, Jin-Gyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.66-73
    • /
    • 2015
  • IFFT is one of the key components in OFDM-based communication systems. In this paper, we propose a new memory efficient IFFT design method for OFDM-based communication systems, based on a mapping of three IFFT input signals which consist of modulated data, pilot and null signals. The proposed method focuses on reducing the memory size in the bit-reversal block which requires the largest number of memory cells in IFFT architectures. To reduce the memory size, we propose a selection mapping method based on decimation-in-time (DIT) algorithm. It is shown that the proposed method achieves a memory reduction of about 50% compared to conventional methods.

Secrecy Performance Evaluation of OSTBC using One-Bit Feedback in Correlated MIMO Channels (상관관계를 갖는 MIMO 채널에서 하나의 피드백 비트를 이용한 OSTBC의 물리계층 보안 성능 평가)

  • Lee, Sangjun;Lee, In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.886-889
    • /
    • 2014
  • In this paper, we evaluate a physical layer security performance of orthogonal space-time block code(OSTBC) using one-bit feedback in the presence of an eavesdropper in wiretap channels, where we assume spatially correlated MIMO(multiple-input multiple-output) channels. In this paper, we present the one-bit feedback based OSTBC(F-OSTBC) scheme and compare security outage performances of F-OSTBC, conventional OSTBC, and transmission antenna selection schemes for various spatial correlation conditions at each node.

  • PDF