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Abstract 
 

In the context of additive noise steganography model, we propose a method to detect least 
significant bit (LSB) matching steganography in grayscale images. Images are decomposed 
into detail sub-bands with local linear transform (LLT) masks which are sensitive to 
embedding. Novel normalized characteristic function features weighted by a bank of 
band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched 
by using a threshold selection algorithm. Extensive experiments are performed on four diverse 
uncompressed image databases. In comparison with other well-known feature sets, the 
proposed feature set performs the best under most circumstances. 
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1. Introduction 

In recent years, information hiding has become an important subject in the field of 
multimedia information security. Steganography, as a major branch of information hiding, is 
the art of embedding secret message imperceptibly within innocuous-looking cover data (e.g, 
digital images in this paper) so as to hide the presence of communication. On the contrary, 
steganalysis aims to discover the existence of secret message and can also serve as an effective 
way to test the security of steganographic techniques. The contest between the two sides 
promotes the progress of information hiding techniques. 

Least significant bit (LSB) replacement is the most simplistic form of steganography, which 
replaces the LSBs of selected cover pixels by the corresponding secret message bits. However, 
a major shortcoming of this steganographic scheme is the phenomenon of pairs of values. By 
exploring the statistical anomaly, some reported methods can not only detect the presence of 
secret message with high reliability, but also estimate the length of message accurately [1][2] 
[3]. LSB matching (also known as ±1 embedding) is a trivial modification of LSB 
replacement, which randomly adds or subtracts pixel values by one to match the LSBs with the 
secret message bits. Despite the slight modification, LSB matching is much harder to be 
detected, especially in the case of low embedding rate. Furthermore, the performances of most 
LSB matching steganalyzers vary considerably across different cover sources [4][5].  

The state-of-the-art specific stganalytic schemes for LSB matching can be divided into two 
categories as follows. 

(1) Steganalysis based on smoothing effect of histogram. 
In the context of additive noise steganography model, Harmsen and Pearlman proved that 

the LSB steganographic methods were equivalent to a low-pass filtering of histograms that 
was quantified by a decrease in the center of mass of the histogram characteristic function 
(HCF-COM) [6]. Afterwards, Ker extended HCF-COM to the center of mass of the adjacency 
histogram characteristic function (AHCF-COM), and proposed the first reliable LSB matching 
detector by incorporating the calibration (downsample) technique with the HCF-COM or 
AHCF-COM [7]. Following Ker’s work, Li et al. suggested calculating the calibrated 
HCF-COM on the difference image and the experimental results showed the new detector 
outperformed Ker’s detector [8]. On the other hand, based on the fact that the local maxima of 
histogram would decrease and the local minima would increase after LSB matching 
embedding, Zhang et al. proposed a detector based on the statistics of the amplitude of local 
extrema in the graylevel histogram [9]. Thereafter, Cancelli et al. extended Zhang et al.’s work 
to the two-dimensional histogram (further called the ALE detector) and the results 
demonstrated significantly improved performance compared to the original one [10]. In [11], 
by observing the uncertainty of local extrema of histogram, Gao et al. suggested calculating 
the sum of the amplitude of each point in the histogram instead of the ALE and they 
demonstrated experimentally that the new steganalyzer outperformed the previous ones 
proposed in [9] [10]. In addition, based on statistical modeling of pixel difference 
distributions, a novel detector was proposed in our previous work [12] and achieved better 
performance than the steganalyzer proposed in [9]. Recently, Cai et al. proposed another novel 
steganalyzer based on renormalized histograms [13]. 

(2) Steganalysis based on spatial dependences of natural images. 
Generally, natural images are regarded as regional stationary sources and have strong 

spatial dependences among adjacent pixels, bit-plances and image blocks. However, these 
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dependences are violated by steganographic embedding where stego noise is an independent 
and identically distributed (i.i.d) sequence independent of the cover image. Huang et al. 
proposed an algorithm to detect the statistical changes of those overlapping flat blocks with 
3×3 pixels in the least two significant bit planes after re-embedding operations [14]. Liu et al. 
described a detector based on correlation intra- and inter- bit-planes, and experimental results 
indicated that the significance of features and the detection performance depended not only on 
the embedding rate, but also on the image complexity [15]. Wang et al. introduced a method 
on the basis of spacing statistics of short and repeated sub-sequences [16]. Recently, Penvy et 
al. presented an algorithm based on Markov transition probability matrix [17]. In addition, 
there were two other methods for estimating the embedding rate [18][19]. Unfortunately, they 
are only effective for decompressed JPEGs. 

Besides those specific steganalyzers, there exists many universal/blind steganalytic 
algorithms, and most of them can be used to detect LSB matching steganography as well. Most 
universal methods extract features from the histograms of image pixels or wavelet coefficients 
and used tow kinds of statistical moments as features. The first is empirical probability density 
function (PDF) moments, for example, Farid [20], Holotyak et al. [21], and Goljan et al. [22]. 
The second is empirical characteristic function (CF) moments, for example, Xuan et al. [23] 
and Shi et al. [24]. Based on Farid’s work and Xuan et al.’s work, Wang et al. proposed 
optimized steganalytic features and demonstrated both qualitatively and quantitatively that the 
CF moments were superior to the PDF moments under a reasonable additive embedding 
model [25]. Furthermore, Li et al. regarded the task of image steganalysis as a texture 
classification problem and extracted features from the normalized histograms of the local 
linear transform (LLT) coefficients of an image [26]. 

Although various steganalyzers have been presented, the detection of LSB matching 
steganography remains unresolved, especially for uncompressed grayscale images and low 
embedding rates. In this paper, motivated by [25] and [26], we propose an effective 
steganalytic method for detecting LSB matching steganography. Specifically, we decompose 
images into a group of detail coefficients using LLT instead of discrete wavelet transform 
(DWT). Then, based on the local stationary characteristics of natural images and our 
observation that the largest difference between the CFs of most cover images and stego images 
lies at mid-frequencies, we construct a bank of band-pass filters for calculating new weighted 
features of the CFs. Lastly, a threshold selection algorithm is applied to feature selection. The 
experiments, performed on uncompressed grayscale images from four diverse image 
databases, analyse the impact of databases on performance. Comparisons to prior art reveal 
that the proposed approach performs the best under most circumstances. 

2. Proposed Method 

2.1 Image Representation with Local Linear Transform 
LLT is a general computational framework in which an image is convolved with a bank of 
relatively small size masks for all local neighborhoods in a sliding window fashion. Local 
discrete cosine transform (DCT) is one kind of such local linear transform by using the 
orthogonal masks derived from DCT. The local DCT masks act as spatial band-pass filters in a 
very much the same way as Gabor filters [27]. Thus, they can provide powerful insight into an 
image’s spatial and frequency characteristics. In aforementioned algorithms, DWT is usually 
chosen to decompose the image. However, we decide to choose LLT over DWT for 
steganalysis of LSB matching. One reason for our choice is that the LLT could capture the 
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changes of the local stochastic textures introduced by data embedding, which had been 
validated by the experimental results in [26]. Another is that the downsample operation 
involved in DWT will decrease the statistical difference between cover images and stego 
images. For example, Ker proposed a kind of downsample technique to estimate the cover 
image [7]. The downsampled stego image can be regarded as the stego image of the 
downsampled cover image by LSB matching with a reduced embedding rate, thus the 
procedure of downsample can reduce the embedding noise [11].  

In addition to six of the local 2D DCT masks and four second derivative masks suggested by 
Li et al. in [26], our LLT masks consist of another two Laplace masks ( 11w  and 12w ) which are 
actually derived from second derivative mask. We prefer second derivative masks to first 
derivative masks because of their stronger response to image details such edges, lines, and 
isolated points. These masks are given as: 

Six local 2D DCT masks: 
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Six second derivative masks: 
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Denote I as an image under analysis. The i-th detail subband iD  is obtained by convolving I 
with iw , i.e., 

,    1 12i iD I w i= ∗ ≤ ≤                                                         (1) 
where, the convolution process consists simply of moving the center of the mask iw  from 
point to point in the image I, and at each point, the response of the mask at that point is the sum 
of products of the mask coefficients and the correspoinding neighborhood pixels in the area 
spanned by the mask. 

Totally, these 12 subbands constitute an image representation with local linear transform. 
Features, such as CF weighted features to be defined in Section 2.2, are extracted from each 
detail subband ,1 12iD i≤ ≤ . 

2.2 New Features of Histogram Characteristic Functions 
First, we give the definition of the CF of random variable. Let ( )p x denote PDF of a random 
variable X, the characteristic function of PDF ( )p x  is expressed as 

( ) ( ) ,    j x
X p x e dxωω ω

∞

−∞
Φ = ∈∫                                                  (2) 

where 1j = − , ω  is the frequency of random variable x  and an arbitrary real number. 
For an additive noise steganography model, it is well known that the CF amplitude will 
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decrease after embedding, i.e. 
( ) ( ) ,    S Cω ω ωΦ ≤ Φ ∀ ∈                                                     (3) 

where | ( ) |C ωΦ  and | ( ) |S ωΦ  are the amplitudes of CFs of cover image and stego image 
respectively. 

In practice, in order to obtain the empirical CF from a detail subband iD , we first estimate 
the PDF ( )p x  from an M-bin histogram { } 1

0
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=
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∑                              (4) 

which is similar to ( )X ωΦ  defined in (3) and can be calculated by fast Fourier transform (FFT) 
algorithms. 
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Fig. 1. Sample images and their corresponding CFs 

Fig. 1 shows three images and their corresponding CF amplitude plots of detail subband 7D , 
in which the blue and red lines represent the cover and stego counterparts, respectively. We 
can observe that the largest differences between the CFs of cover images and stego images lie 
at mid-frequencies, and the locations of the largest differences vary across images with diverse 
underlying image content. Furthermore, we also give the distributions of the locations of the 
largest differences between the CFs of 7D  for cover images and stego images on three 
self-built databases, as shown in Fig. 2, which validates our previous observation. 
Specifically, locations of the largest differences move to low-frequencies as the complexities 
of images increase. Intuitively, the extracted steganalytic features should capture the largest 
differences between the CFs of cover images and stego images. 
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Fig. 2. The distributions of the locations of the largest differences between the CFs of cover images and 
stego images with 50% LSB matching embedding. The three databases consist of 500 smooth, artifical 

texture and natural texture images, respectively. 
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(b) (c) 

Fig. 3. Amplitude plots of characteristic functions and filters for calculating features: (a) CFs and our 
proposed new filters used in (5), (b) CFs and high-pass filters used in (6) and (c) CFs and high-pass 

filters used in (7) 

On the basis of above observation, we propose a new kind of CF weighted features, the n-th 
CF weigthed feature is defined as 

/ 2
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In the above equation, ( )kΦ  is weighted by 2sin n k
K
π 

 
 

. Essentially, the features *ˆ
nM  are 

obtained by band-pass filtering the CFs, as shown in Fig. 3-(a). These CF weighted features 
convey more information about the low-to mid-frequency components as the number n 
increases. Hence, they can better capture the largest differences of CFs for images with diverse 
image content. 

There are two another CF features presented in [23] and [25], known as CF moments, i.e. 
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These features are obtained by essentially high-pass filtering the CFs, as shown in Fig. 3-(b) 
and (c) (Since ( )kΦ  has central symmetry structure, for the convenience of comparison, we 
only plotted the left half of ( )kΦ  in Fig. 3-(c)). 

Moreover, we define the normalized CF weighted features as 
*
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= Φ∑ . The normalization is equivalent to a self-calibration which reduces 

the dynamic range of CF weighted features and the overlap between the range of *
nM  of cover 

images and that of stego images. A similar normalization was used in [25] and [23] 
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The advantage of *
nM  over A

nM  and '
nM  will be evident in Section 2.3. 

2.3 Feature Evaluation 
To evaluate the usefulness of a feature in discriminating between classes, several criteria such 
as the Bhattacharyya distance may be used. The Bhattacharyya distance is defined as [25] 

0 1 0 1( , ) log ( ) ( )B p p p x p x= − ∫                                            (11) 
where x  is a feature, and 0 ( )p x  and 1( )p x  are the feature PDFs under Class 0 and Class 1, 
respectively. The larger the 0 1( , )B p p  is for a feature, the better that feature is for 
classification. When 0 1 0 1, ( , ) 0p p B p p= =  and the feature is useless. In practice, 0 ( )p x  and 

1( )p x  are often unavailable, and we estimate them using their histogram of training features 
and compute the empirical Bhattacharyya distance. 

As shown in Fig. 4, we compare the empirical Bhattacharyya distance of features *
nM  from 

(8), A
nM  from (9), and '

nM  from (10). The features are calculated from the subband 7D  of the 
LLT of 3164 cover images from CAMERA database [28] and their corresponding stego 
images with 50% LSB matching embedding. It is observed that the proposed CF weighted 
features *

nM  are better features than the CF moment features A
nM  and '

nM  since the empirical 
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Bhattacharyya distance of *
nM  is larger than that of the others. The above phenomena have 

been fairly consistently observed across all of the subbands 1 12~D D . 
 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

B
ha

tta
ch

ar
yy

a 
D

is
ta

nc
e

 

 

 
 

Fig. 4. Empirical Bhattacharyya distance for features *

n
M , A

n
M , and '

n
M , 1 10n≤ ≤ . Data are gathered 

from the subband 
7

D  of the LLT of 3164 cover images, and their corresponding stego images with 50% 
LSB matching embedding. 

2.4 Feature Selection 
Given an image representation with LLT, we can calculate innumerous CF weighted features 
from each subband (1 12)iD i≤ ≤  by increasing the number n. Soppose we have a finite set of 
training samples and a total of J available features. The optimal feature set can be found by an 
exhaustive search over 2J possibilities, which could achieve better performance at the cost of 
higher computational complextiy. To achieve a tradeoff between performance and 
computational complexity, we propose an improved threshold selection algorithm proposed 
by Wang et al. [25] to search a suboptimal feature set. The procedure of threshold selection 
algorithm is summarized as follows: 
(1) Define a cost function C, and set 01, 0N C= = ; 
(2) Divide the training set into 5 subsets of equal size; 
(3) For each training image, extract * (1 )nM n N≤ ≤  from each subband iD  as features. The 

feature set size is lN with l = 12 being the number of detail subbands; 
(4) Each subset is tested using the classifier trianed on the remaining 4 subsets for 5-fold 

cross-validation and get the average value of C; 
(5) If 0C C> , 0C C= , 1N N= + , repeat steps (3) through (4); else 1pN N= − , take the lNp 

features to form the feature set. 
where, the AUC value is used as the cost function in [25]. In this paper, we define a more 
robust cost function as 

_
_ 80 _ 50 _

AUC TP EC
FP FP Min E

+
=

+ +
                                           (12) 

where the abbreviative notations in the right half of the equation are five performance 
evaluation criteria defined as follows: 
(1) AUC: area under the receiver operating characteristic (ROC) curve; 
(2) TP_E: the true positive rate when the false positive rate equals to the false negative rate; 
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(3) FP_80: the false positive rate at the true positive rate of 80%; 
(4) FP_50: the false positive rate at the true positive rate of 50%; 
(5) Min_E: the minimal average probability of two errors (false positive rate and false negative 
rate). 
where true positive rate represents the detection rate of stego images correctly classified as 
stego images; false positive rate represents the detection rate of cover images incorrectly 
classified as stego images; false negative rate represents the detection rate of stego images 
incorrectly classified as cover images, and the sum of true positive rate and false negative rate 
is 1. 

The closer to 1 the first two measures are, the better the performance of the steganalyzer, 
and the closer to 0 the latter three measures are, the better the performance of the steganalyzer. 
Hence, the steganalyzer has better performance as C increase. The computational complexity 
is ( )NΟ  for the threshold selection algorithm, while it is (2 )NΟ  for an exhaustive search. The 
experimental results of feature selection will be reported in Section 3.2. 

2.5 Procedure of Proposed Method 
The whole procedure of proposed steganalysis algorithm is summarized as follows: 
(1) For any given image I, compute the detail subbands (1 12)iD i≤ ≤  according to equation 

(1); 
(2) For all images in the training set, extract CF weighted features * ,1nM n N≤ ≤  from each 

subband according to equation (8), and get a collection of 12N features; 
(3) Perform the threshold selection algorithm using the features of training set to search an 

suboptimal feature set with a size of 12 pN ; 
(4) Train a classifier using the selected features of all images in trainng set; 
(5) For all images in the test set, extract CF weighted features * ,1n pM n N≤ ≤  from each 

subband according to equation (8), and get a collection of 12 pN features; 
(6) Classify images in test set using the trained classifier. 

3. Experimental Results and Analysis 

3.1 Experimental Setup 
3.1.1 Image Databases 
It is well known that steganalysis of LSB matching is very sensitive to the type of cover 
images. To evaluate our proposed feature set and compare it to prior art under different 
conditions, the experiments were run on the following four uncompressed image databases. 
(1) CAMERA contains 3164 TIFF images with the size of 512×512 [28]. 
(2) BOWS contains 10000 grayscale images with the size of 512×512 [29]. 
(3) UCID consists of 1338 TIFF images with the size of 384×512 or 512×384 [30]. 
(4) NRCS contains 3185 TIFF images with the size of 1500×2100 or 2100×1500 [31]. 
(5) HYBRID HYBRID contains images from all four databases, approximately 17700 images. 

Where necessary, all images have been converted to grayscale, and in each database, two 
sets of stego images were created with the embedding rates of 50% and 25%. 

It should be noted that these image datasets are very different: CAMERA images are central 
cropped images captured by 24 different digital cameras in the raw format, while BOWS 
images are rescaled and cropped natural images of various sizes. UCID images are small and 
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undergone downsampling operation, while NRCS images, coming from raw scans of film, are 
large and very noisy. 
3.1.2 Steganalytic Algorithms for Comparison 
We compare our proposed method with the following four steganalytic algorithms. 
(1) SPAM. Penvy et al. extracted a 686-dimensional feature set from the second-order 
subtractive pixel adjacency model with T=3 [17], and demonstrated that it outperformed the 
previous detectors in [10] and [22]. 
(2) RDIH. Cai et al. extracted a 70-demensional feature set from the peak-values and the 
renormalized histograms of difference images [13]. 
(3) OPTCF. In [25], Wang et al. extracted both PDF moment and CF moment features from 
wavelet subbands and prediction error subbands, and demonstrated that this algorithm was 
superior to the previous detectors in [20] and [23]. In addition, the threshold selection 
algorithm is also applied to feature selection in our experiments. 
(4) LLTPDF. Li et al. extracted a 110-dimensional feature set from the PDFs of the LLT 
coefficients [26]. 
3.1.3 Classifier and Evaluation Criteria 
Fisher Linear Discriminant (FLD) is applied for all feature sets except SPAM which is linear 
non-separable from our experimental results. Instead, support vector machine (SVM) [32] is 
applied for SPAM feature set. All the features are linearly scaled before applying classifier. 
For a feature f , we find its maximum value maxf  and its minimum value minf  from all the 
training images. For any training or test images, f  will be scaled as follows: 

min

max min

f ff
f f

−
=

−
                                                        (13) 

For all the training images, [0,1]f ∈ ; for most test images, [0,1]f ∈ . The main advantage of 
this scaling step is to avoid features with large numerical ranges dominate those in smaller 
numerical ranges. Another advantage is to avoid numerical difficulties during the calculation 
[32]. Five measures (AUC, TP_E, FP_80, FP_50 and Min_E) defined in Section 2.4 are used 
to evaluate the steganalyzer performance on the test set. 

3.2 Results of Feature Selection 
Fig. 5 illustrates the threshold selection procedure described in Section 2.4 for a training 
subset from CAMERA database: 633 cover images and their stego counterparts with an 
embedding rate of 50%. The features are *

nM  from iD , 1 12i≤ ≤ . We set 20N = . The feature 
set size is 12 20 240lN = × = . We observe that the steganalysis performance measured by C 
improves when N increases, peaks at Np = 6. In this way, the threshold selection algorithm 
identifies Np and forms a steganalytic feature set that consists of those 12Np = 72 features. The 
above similar peaking effect can be observed for other databases. Hence, we can use the 
threshold selection algorithm to search the suboptimal feature sets for other databases. Our 
experimental results indicate that the same or approximate Np is searched for a specific 
database under different embedding rates. The values of Np are 6, 7, 3 and 6 for CAMERA, 
BOWS, UCID and NRCS respectively. For HYBRID database, the value of Np is 6 under the 
embedding rate of 25%, while the value of Np is 7 under the embedding rate of 50%. It is 
generally observed that the best performance is achieved when Np = 6 as long as the number of 
training images is large enough. 
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Fig. 5. The cost function C for a training subset from CAMERA database with an embedding rate of 
50%, using the threshold selection procedure. The performance peaks at Np = 6. 

3.3 Impact of Image Databases 
In this Section, we report the experimental results that test the variability in performance 
across databases. The fixed embedding rate of 25% is used both during training and testing. 
Similar behavior is observed for the embedding rate of 50% but data is omitted for brevity and 
clarity. For comparison purposes, the experiments are performed under the following three 
conditions.  
Specific. Both training and testing are performed on the same database. 
Disjoint. Training is performed on three databases, and testing is performed on the fourth 

database which is not used during training. 
Joint. Training is performed on portions of all four databases, and testing is performed on the 

portion of one of the four databases, which is not used during training. 
The experimental results are summarized in Table 1. From the table, we can observe that: 

(1) For each setup, the performance varies considerable across the four image databases, and 
the performances on CAMERA and BOWS databases are consistently better than that on the 
other two databases as steganalysis is more accurate on relatively smooth images (e.g. images 
captured by cameras) than on images with more stochastic texture (e.g. images recaptured by 
scanner). (2) For different setups, as expected, the best performances are achieved when the 
training and testing databases match each other (“Specific”). However, when trainging 
database mismatches testing database (“Disjoint”), we observe considerable performance 
degradation for all four databases. This indicates that each individual database is not 
representative of the other databases. Moreover, the most drastic degradation occurs on 
CAMERA database. This may be due to the fact that this database actually consists of images 
captured by different cameras (i.e. different image sources). (3) If we do not know anything 
about the image source, our best strategy is to train the steganalyzer on as diverse image 
database as possible. The results under this condition are shown in Table 1 in rows captioned 
by “Joint”. Comparing to “Disjoint”, we observe a considerable performance increase on the 
former two databases and a slight increase on the latter two databases. Whereas, comparing to 
“Specific”, we are still able to observe performance degradation since training is no longer 
specific database. An alternative way of constructing a steganalyzer that is less sensitive to 
image source is to train a bank of classifiers for several image sources and recognize the image 
source of a test image using source identification technique in digital image passive forensics 
[33][34] and send the image to the appropriate classifier. 
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Table 1. The impact of databases on performance 

Test Database Setup AUC TP_E FP_80 FP_50 Min_E 

CAMERA 
Specific 0.9889 0.9577 0.0073 0.0029 0.0409 
Disjoint 0.7782 0.6815 0.4211 0.1790 0.2992 

Joint 0.8797 0.8134 0.1783 0.0738 0.1806 

BOWS 
Specific 0.9872 0.9452 0.0126 0.0026 0.0538 
Disjoint 0.9589 0.9017 0.0634 0.0238 0.0932 

Joint 0.9780 0.9204 0.0301 0.0052 0.0763 

UCID 
Specific 0.8809 0.8041 0.1910 0.0511 0.1923 
Disjoint 0.8259 0.7418 0.3323 0.0833 0.2519 

Joint 0.8280 0.7439 0.3233 0.0890 0.2494 

NRCS 
Specific 0.8436 0.7665 0.2605 0.1044 0.2276 
Disjoint 0.7649 0.6859 0.4193 0.1849 0.3076 

Joint 0.7733 0.6925 0.4031 0.1775 0.2990 

3.4 Comparison to Prior Art 
For each image database, we randomly select 1 out of 5 cover images and their stego 
counterparts for training, and the remaining cover and stego images are used for testing. The 
procedures are repeated 20 times for cross-validatin and the results are averaged to obtain 
more reliable performance. 

We report the experimental results with the embedding rates of 25% and 50% in Table 2 
and Table 3, respectively (Note: The values in bold indicate the best performance for each 
database). From the tables, we can see that: (1) All of algorithms perform more accurately as 
the embedding rate increases. (2) As described in Section 3.3, all of algorithms exhibit the 
variability in performance across databases. First, a given algorithm has different 
performances on different databases. For example, for the LLTPDF method, the AUC 
difference between CAMARA and UCID is up to 20% at the embedding rate of 25%. 
Furthermore, one steganalytic algorithm having better performance on one database than on 
another does not imply that another algorithm will have the same behavior on the two image 
databases. For instance, OPTCF has better performance on BOWS than on CAMERA, but our 
proposed approach has better performance on CAMERA than on BOWS. Hence, we should 
perform the performance comparison of different algorithms on a large number of images. (3) 
Compared with RDIH, OPTCF and LLTCF, our proposed method performs the best under 
most circumstances, especially in the low embedding rate cases. (4) Compared with SPAM, 
our proposed feature set performs better on CAMERA and BOWS, comparative on UCID and 
less accurate on NRCS and HYBRID. However, it should be noted that different classifiers are 
applied to these two feature sets. If SVM is also applied to our feature set, our proposed 
approach will perform better. For instance, we get a 72-dimentional feature set by setting Np to 
be 6, and then apply SVM classifier to this feature set on HYBRID, and get the results as 
shown in Table 4. It is evident that our proposed feature set with SVM has a considerable 
increase in performance compared with the same feature set with FLD and has comparative 
performance of SPAM. (5) Generally, the proposed algorithm has superiority over others on 
relatively smooth images (e.g. CAMERA and BOWS), while SPAM performs best on very 
noisy images (e.g. NRCS). 

Table 2. Comparison of the performance at an embedding rate of 25% 

Database Algorithm AUC TP_E FP_80 FP_50 Min_E 
CAMERA SPAM 0.9772 0.9277 0.0186 0.0024 0.0719 
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RDIH 0.9713 0.9208 0.0278 0.0072 0.0777 
OPTCF  0.9071 0.8360 0.1380 0.0389 0.1638 

LLTPDF 0.9777 0.9241 0.0263 0.0065 0.0742 
Proposed  0.9889 0.9577 0.0073 0.0029 0.0409 

BOWS 

SPAM 0.9826 0.9311 0.0156 0.0030 0.0689 
RDIH 0.9646 0.9107 0.0417 0.0151 0.0884 

OPTCF 0.9504 0.8879 0.0643 0.0189 0.1106 
LLTPDF 0.9744 0.9220 0.0316 0.0100 0.0769 
Proposed 0.9872 0.9452 0.0126 0.0026 0.0538 

UCID 

SPAM 0.8671 0.8065 0.1897 0.0692 0.1921 
RDIH 0.8257 0.7620 0.2804 0.0972 0.2346 

OPTCF 0.8112 0.7389 0.3257 0.1177 0.2574 
LLTPDF 0.8084 0.7258 0.3474 0.1187 0.2687 
Proposed 0.8809 0.8041 0.1910 0.0511 0.1923 

NRCS 

SPAM 0.8968 0.8238 0.1597 0.0581 0.1748 
RDIH 0.8274 0.7495 0.2953 0.1097 0.2458 

OPTCF 0.7598 0.6912 0.4240 0.1745 0.3050 
LLTPDF 0.7599 0.6878 0.4272 0.1780 0.3086 
Proposed 0.8436 0.7665 0.2605 0.1044 0.2276 

HYBRID 

SPAM 0.9492 0.8848 0.0659 0.0185 0.1147 
RDIH 0.8860 0.8009 0.1986 0.0599 0.1957 

OPTCF 0.8735 0.7946 0.2088 0.0783 0.2009 
LLTPDF 0.8920 0.8055 0.1900 0.0629 0.1896 
Proposed 0.9211 0.8403 0.1340 0.0391 0.1549 

 
Table 3. Comparison of the performance at an embedding rate of 50% 

Database Algorithm AUC TP_E FP_80 FP_50 Min_E 

CAMERA 

SPAM 0.9979 0.9818 0.0008 0.0000 0.0182 
RDIH 0.9942 0.9674 0.0049 0.0018 0.0306 

OPTCF 0.9686 0.9151 0.0362 0.0105 0.0828 
LLTPDF 0.9901 0.9570 0.0091 0.0028 0.0417 
Proposed 0.9984 0.9859 0.0005 0.0001 0.0132 

BOWS 

SPAM 0.9947 0.9693 0.0048 0.0018 0.0296 
RDIH 0.9850 0.9521 0.0167 0.0081 0.0463 

OPTCF 0.9816 0.9427 0.0196 0.0100 0.0562 
LLTPDF 0.9871 0.9547 0.0180 0.0067 0.0434 
Proposed 0.9955 0.9739 0.0049 0.0016 0.0252 

UCID 

SPAM 0.9500 0.8860 0.0626 0.0112 0.1112 
RDIH 0.9014 0.8363 0.1366 0.0396 0.1601 

OPTCF 0.9078 0.8317 0.1443 0.0362 0.1644 
LLTPDF 0.8909 0.8062 0.1872 0.0503 0.1888 
Proposed  0.9463 0.8764 0.0675 0.0113 0.1202 

NRCS 

SPAM 0.9838 0.9486 0.0204 0.0086 0.0500 
RDIH 0.9405 0.8760 0.0840 0.0302 0.1199 

OPTCF 0.8965 0.8197 0.1648 0.0553 0.1764 
LLTPDF 0.8808 0.7974 0.2045 0.0632 0.1983 
Proposed 0.9269 0.8642 0.1072 0.0515 0.1254 

HYBRID 

SPAM 0.9838 0.9421 0.0203 0.0069 0.0551 
RDIH 0.9392 0.8675 0.0997 0.0354 0.1236 

OPTCF 0.9474 0.8797 0.0771 0.0256 0.1166 
LLTPDF 0.9359 0.8628 0.1048 0.0353 0.1315 
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Proposed 0.9661 0.9069 0.0531 0.0145 0.0884 
 

Table 4. Performance of our feature set with SVM on HYBRID 

Database Embedding rate AUC TP_E FP_80 FP_50 Min_E 

HYBRID 25% 0.9606 0.8986 0.0541 0.0155 0.0989 
50% 0.9873 0.9474 0.0175 0.0045 0.0479 

4. Conclusion 
From the view of image textures, we regard the embedded secret message as a kind of 
stochastic texture in a fine scale and decompose images into a group of detail subbands with a 
bank of LLT masks which are very sensitive to textures. In order to capture the largest 
statistical difference before and aflter embedding, a bank of band-pass filters is constructed to 
extract novel features from the characteristic functions of the detail subbands. A feature 
selection algorithm is adopted to search an informative and low dimensional feature set. The 
impact of image databases is investigated on four diverse uncompressed image databases. 
Compared with the state-of-the-art steganalytic algorithms, the proposed feature set performs 
the best under most circumstances. Furthermore, although LSB matching steganography is 
only discussed in the paper, since the principle of this method is based on additive noise 
embedding, it is expected applicable to other steganographic methods as well. Future work 
will take other steganographic algorithms in the spatial or transform domain into 
consideration. 
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