• Title/Summary/Keyword: Image Clustering

Search Result 601, Processing Time 0.019 seconds

Interactive Region Segmentation Method Using Agglomerative Clustering

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and droughts are increasing. If we can detect the possibility of natural disasters in advance, we can prevent massive damages caused by natural disasters. Recent advances in visual sensor technologies have enabled remote monitoring of a variety of natural environments, including lakes, rivers, and shores. In this paper, we propose a method to segment an image obtained from video sensor networks into regions in order to monitor the environment effectively. In the proposed method, we first partition the image into superpixels and model the connections between superpixels as a graph. Then, initial seeds for each region are set by using the prior information, and the initial seeds are expanded to form regions using agglomerative clustering. Experimental results show that the proposed method extracts the regions from natural environment images easily and accurately.

Image Clustering using Improved Neural Network Algorithm (개선된 신경망 알고리즘을 이용한 영상 클러스터링)

  • 박상성;이만희;유헌우;문호석;장동식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

Twostep Clustering of Environmental Indicator Survey Data

  • Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining technique is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. It has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on off-line or on-line and so on. We analyze Gyeongnam social indicator survey data by 2001 using twostep clustering technique for environment information. The twostep clustering is classified as a partitional clustering method. We can apply these twostep clustering outputs to environmental preservation and improvement.

  • PDF

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition (물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정)

  • Kim, Dong-Gi;Lee, Seong-Gyu;Lee, Moon-Wook;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

RAG-based Hierarchical Classification (RAG 기반 계층 분류 (2))

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • This study proposed an unsupervised image classification through the dendrogram of agglomerative clustering as a higher stage of image segmentation in image processing. The proposed algorithm is a hierarchical clustering which includes searching a set of MCSNP (Mutual Closest Spectral Neighbor Pairs) based on the data structures of RAG(Regional Adjacency Graph) defined on spectral space and Min-Heap. It also employes a multi-window system in spectral space to define the spectral adjacency. RAG is updated for the change due to merging using RNV (Regional Neighbor Vector). The proposed algorithm provides a dendrogram which is a graphical representation of data. The hierarchical relationship in clustering can be easily interpreted in the dendrogram. In this study, the proposed algorithm has been extensively evaluated using simulated images and applied to very large QuickBird imagery acquired over an area of Korean Peninsula. The results have shown it potentiality for the application of remotely-sensed imagery.

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF

Image Recognition and Clustering for Virtual Reality based on Cognitive Rehabilitation Contents (가상현실 기반 인지재활 콘텐츠를 위한 영상 인식 및 군집화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1249-1257
    • /
    • 2017
  • Due to the 4th industrial revolution and an aged society, many studies are being conducted to apply virtual reality to medical field. Research on dementia is especially active. This paper proposes virtual reality based on cognitive rehabilitation contents using image recognition and clustering method to improve cognitive and physical disabilities caused by dementia. Unlike the existing cognitive rehabilitation system, this paper uses travel photos that reflect the memories of the subjects to be treated. In order to generate automated cognitive rehabilitation contents, we extract face information, food pictures, place information, and time information from photographs, and normalization is performed for clustering. And we present scenarios that can be used as cognitive rehabilitation contents using travel photos in virtual reality space.