DOI QR코드

DOI QR Code

Multiple Texture Image Recognition with Unsupervised Block-based Clustering

비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식

  • Lee, Woo-Beom (Dept.of Computer Engineering, Daegu Technology College) ;
  • Kim, Wook-Hyun (Dept.of Electronics Information Engineering, Yeungnam University)
  • 이우범 (대구과학대학 컴퓨터공학과) ;
  • 김욱현 (영남대학교 전자정보공학부)
  • Published : 2002.06.01

Abstract

Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

텍스쳐 분석은 표면, 물체, 모양, 깊이 인식 등의 많은 영상 이해 분야에서 활용되는 가장 중요한 인식 기술 중의 하나이다. 그러나 기존의 방법들은 다중 텍스쳐 영상에 내재된 텍스쳐 성분의 인식 정보를 활용할 수 없는 분할만을 목적으로 하고 있으며, 내재된 텍스쳐 인식을 기반으로 하는 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 텍스쳐 성분을 방향장(orientation-field) 특징 정보인 방향각과 방향강도로 정의하고 블록-기반 자기조직화 신경회로망에 의해서 비교사적으로 영상 내에 존재하는 텍스쳐 영역을 군화(clustering) 및 통합(merging) 처리에 의해서 식별한다. 또한 제안된 알고리즘의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 블록 기반의 불림(dilation) 및 윤곽 검출 과정을 통해서 영상에 내재하는 텍스쳐 영역을 분할함으로써 그 유효성을 보인다.

Keywords

References

  1. R. Haralick, K. Shanmugam, and I. Dinstein, 'Texture features for image classification,' IEEE Trans. Syst. Man. Cyb., 3, pp.610-621, 1973 https://doi.org/10.1109/TSMC.1973.4309314
  2. J.M. Coggin and A.K. Jain, 'A spatial filtering approach to texture analysis,' Pattern Recognition, Letters, 3(3), pp.195-203, 1985 https://doi.org/10.1016/0167-8655(85)90053-4
  3. F. Tomita and S. Tsuji, Computer Analysis of Visual Textures, Kluwer Academic Pub., 1990
  4. M. Tuceryan and A.K. Jain, 'Texture segmentation using Voronoi polygons,' IEEE Trans. PAMI, 12, pp.211-216, 1990 https://doi.org/10.1109/34.44407
  5. R. Chellappa and S. Chatterjee, 'Classification of Textures using Gaussian Markov random field,' IEEE Trans. Acoust. Speech Signal Processing, 33, pp.953-963, 1985
  6. G.C. Cross and A.K. Jain, 'Markov random field texture modes,' IEEE Trans. PAMI, 5, pp.25-39, 1983 https://doi.org/10.1109/TPAMI.1983.4767341
  7. K.I. Laws, 'Rapid texture ifentification,' In Proc. of the SPIE Conf. on Image Processing for Missile Guidance, pp.376-380, 1980
  8. A.K. Jain and F. Forrokhnia, 'Unsupervised texture segmentation using Gabor filters,' Pattern Recognition, 24(12), pp.1167-1186, 1991 https://doi.org/10.1016/0031-3203(91)90143-S
  9. H.E. Knutsson and G.H. Granlund, 'Texture analysis using two-dimensional quadrature filter,' In Proc. IEEE Workshop on Computer Arch. for Pattern Analysis and Image Database Management, pp.206-213, 1983
  10. M. Unser, 'Texture Classification and Segmentation Using Wavelet Frames,' IEEE Trans. Image Processing, 4(11), pp.1549-1560, 1995 https://doi.org/10.1109/83.469936
  11. I. Ng, T. Tan and J. Kitter, 'On local linear transform and Gabor filter representation of texture,' In Proc. Int. Conf. on Pattern Recognition, pp.627-631, 1992 https://doi.org/10.1109/ICPR.1992.202065
  12. F. Ade, 'Characterization of texture by 'eigenfilter',' Signal Processing, 5(5), pp.451-457, 1983 https://doi.org/10.1016/0165-1684(83)90008-7
  13. A.C. Bovik, M. Clark, and W.S. Geisler, 'Multichannel texture analysis using localized spatial filter,' IEEE Trans. PAMI, 12(1), pp.55-73, 1990 https://doi.org/10.1109/34.41384
  14. H.A. Cohen and J. You, 'Texture statistic selective masks,' In Proc. 9th Scandinavian Conf. on Image Processing, pp.930-935, 1989
  15. M.S. Landy and J.R. Bergen, 'Texture Segregation and Orientation Gradient,' Vision Res., 31(4), pp.679-691, 1991 https://doi.org/10.1016/0042-6989(91)90009-T
  16. Erkki Oja, ペダ一ソ 認識と部分空間法, Hidemitsu Ogawa, 1986
  17. T. Kohonen, 'The self-organizing map,' Proc. IEEE, 78(9), pp.1464-1480, 1990 https://doi.org/10.1109/5.58325
  18. Y.V. Venkatesh and S. Sujeet, 'Some Experiments on Feature-based Texture Recogntion using Self-Organizing Map,' The 5th Int. COnf. on Control,Automation, Robotics and Vision, pp.396-400, 1998
  19. Yoh Han Pao, Adaptive Pattern recognition and Neural Networks, Addison-Wesley Publishing Company Inc., 1989
  20. Woobeom Lee and Wookhyun Kim, 'Self-Organizaion Neural Network for Multiple Texture Image Segmentation,' TENCON'99 of IEEE region 10 Conference, pp.730-733, 1999 https://doi.org/10.1109/TENCON.1999.818518
  21. D. Marr and E. Hildreth, 'A theory of edge detection,' Proc. R. Soc. Lond. B207, pp.187-217, 1980
  22. P. Brodaz, Texture : A Photographic Album for Artists and Designer, Dover Publication, 1966
  23. T. Randen and J.H. Husoy, 'Filtering for Texture Classification : A Comparative Study,' IEEE Trans. PAMI, 21(4), pp.291-310, 1999 https://doi.org/10.1109/34.761261
  24. T. Randen, Filter and Fiter Bank Design for Image Texture Recognition, Ph.D. thesis, Norwegian Univ. of Sicence and Technology Stavanger College, Norway, 1997
  25. T. Randen and J.H. Husoy, 'Filtering for Texture Classification : A Comparative Study,' IEEE Trans. PAMI, 21(4), pp.291-310, 1999 https://doi.org/10.1109/34.761261
  26. D. Marr, Vision : A Computational Investigation into the Human Representation and Processing of Visual Information, W.H. Freeman & Company, 1982
  27. John C. Russ, The Image Processing Handbook 3th, IEEE PRESS, 1999