• Title/Summary/Keyword: Hilbert space.

Search Result 406, Processing Time 0.026 seconds

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

On [m, C]-symmetric Operators

  • Cho, Muneo;Lee, Ji Eun;Tanahashi, Kotaro;Tomiyama, Jun
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.637-650
    • /
    • 2018
  • In this paper first we show properties of isosymmetric operators given by M. Stankus [13]. Next we introduce an [m, C]-symmetric operator T on a complex Hilbert space H. We investigate properties of the spectrum of an [m, C]-symmetric operator and prove that if T is an [m, C]-symmetric operator and Q is an n-nilpotent operator, respectively, then T + Q is an [m + 2n - 2, C]-symmetric operator. Finally, we show that if T is [m, C]-symmetric and S is [n, D]-symmetric, then $T{\otimes}S$ is [m + n - 1, $C{\otimes}D$]-symmetric.

ON WEIGHTED BROWDER SPECTRUM

  • Dharmarha, Preeti;Kumari, Sarita
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • The main aim of the article is to introduce new generalizations of Fredholm and Browder classes of spectra when the underlying Hilbert space is not necessarily separable and study their properties. To achieve the goal the notions of 𝛼-Browder operators, 𝛼-B-Fredholm operators, 𝛼-B-Browder operators and 𝛼-Drazin invertibility have been introduced. The relation of these classes of operators with their corresponding weighted spectra has been investigated. An equivalence of 𝛼-Drazin invertible operators with 𝛼-Browder operators and 𝛼-B-Browder operators has also been established. The weighted Browder spectrum of the sum of two bounded linear operators has been characterised in the case when the Hilbert space (not necessarily separable) is a direct sum of its closed invariant subspaces.

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.

ON THE CYCLICTY OF ADJOINTS OF WEIGHTED SHIFTS

  • YOUSEFI, B.;TAGHAVI, M.
    • Honam Mathematical Journal
    • /
    • v.26 no.2
    • /
    • pp.147-153
    • /
    • 2004
  • We provide some sufficient conditions for the adjoint of a unilateral weighted shift operator on a Hilbert space to be cyclic.

  • PDF

EQUATIONS AX = Y AND Ax = y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho;Park, Dong-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.399-411
    • /
    • 2006
  • Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. Let P be the projection onto $\frac\;{R(X)}$, where RX is the range of X. If PE = EP for each $E\;\in\;L$, then there exists an operator A in AlgL such that AX = Y if and only if $$sup\{{\parallel}E^{\bot}Yf{\parallel}/{\parallel}E^{\bot}Xf{\parallel}\;:\;f{\in}H,\; E{\in}L}=K\;<\;\infty$$ Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel} = K.$ Let x and y be vectors in H and let $P_x$ be the projection onto the singlely generated space by x. If $P_xE = EP_x$ for each $E\inL$, then the assertion that there exists an operator A in AlgL such that Ax = y is equivalent to the condition $$K_0\;:\;=\;sup\{{\parallel}E^{\bot}y{\parallel}/{\parallel}E^{\bot}x\;:\;E{\in}L}=<\;\infty$$ Moreover, we may choose an operator A such that ${\parallel}A{\parallel} = K_0$ whose norm is $K_0$ under this case.

PALAIS-SMALE CONDITION FOR THE STRONGLY DEFINITE FUNCTIONAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.461-471
    • /
    • 2009
  • Let ${\Omega}$ be a bounded subset of $R^n$ with smooth boundary and H be a Sobolev space $W_0^{1,2}({\Omega})$. Let $I{\in}C^{1,1}$ be a strongly definite functional defined on a Hilbert space H. We investigate the conditions on which the functional I satisfies the Palais-Smale condition. Palais-Smale condition is important for determining the critical points for I by applying the critical point theory.

  • PDF

A note on convexity on linear vector space

  • Hong, Suk-Kang
    • Journal of the Korean Statistical Society
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 1973
  • Study on convexity has been improved in many statistical fields, such as linear programming, stochastic inverntory problems and decision theory. In proof of main theorem in Section 3, M. Loeve already proved this theorem with the $r$-th absolute moments on page 160 in [1]. Main consideration is given to prove this theorem using convex theorems with the generalized $t$-th mean when some convex properties hold on a real linear vector space $R_N$, which satisfies all properties of finite dimensional Hilbert space. Throughout this paper $\b{x}_j, \b{y}_j$ where $j = 1,2,......,k,.....,N$, denotes the vectors on $R_N$, and $C_N$ also denotes a subspace of $R_N$.

  • PDF