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1. Introduction

Let A(ay) be an arbitrary infinite matrix with complex entries @n(j, k=1, 2, 3, «+e+e+). If
the matrix A represents a bounded linear operator 4 (For the corresponding operator we
shall coveniently use the same symbol A since there will be no ambiguity) in the complete
Hilbert space I, with respective to the standard basis {e; }, then | A)] =[ A and | A¥} < A}
hold for all 7, j. Here A; and A’ are the 3-th row and the k-th column vectors of the matrix
A respectively, | Ayl =/ ;Jaﬂ,{"",li A¥| = IZIamZ 2 Al is operator-norm,

So we will concentrate our attention to the case that both | Ayl and | AY} are bounded above,

and throughout this paper we will assume that thete is 2 positive constant M such that

(1) TA) =M and | A¥] =M
for all 7, k
unless otherwise mentioned,

Under this assumption we can prove that the vector y==AX with components y = ?am
¥, ¥=(%y) € [, belongs to Co, the vector space of all null sequences (components are complex
numbers of course),

Theorem 1. Suppose the matrix A={ay) satisfies the condition (1}, and X= (%) € [,
Then the component y,=z anX of Y=AX converges to 6 as j—>00, i, e. YE€¢o .

Proof. . . .
INEIE andid T andd  And 13 @S T antid

S/ (@l {anl++) / (EpaP P+

§V M /(fxn+lf2+ixn+2§2+ "')

can be made arbitrarily small by taking sufficiently large #.
Next Sg @n¥yl can be made arbitrarily small by taking sufficiently large 7.
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According to Theorem 1, X € [, implies y=AX € Co, But y=A¥ may not belong to /. So
let D(A) be the sub-space consisting of all the vectors X €/, for which y=AX € {,. Then we
have the following theorem. _

Theorem 2. Suppose that A satisfies the conditin(1), and D (A)= l,. Then A is bounded
on I,

Proof. Appealing to the Closed Graph Theorem it is enough to show that
if || ¥®—x}}—>0 and | AX®—y||— 0, then y= AxX,
Now for each fixed j
[Task—yls] Lani—Z anX® (| HZ eV -yl
Al - e =2 HlAXP— gl — O(n—>00)

Hence y,=2k:a,kxk.

That is y=Ax,

II. Componentwise convergence in /,

Let y=AX, where A satisfies the condition (1) and ¥=(X,) is a vector of {, This means
that the components 3; of the vector ¥ are given by the formulae

(2) y=Zan* (j=1,2 3-).

Now let
¥V = HA' + XA + XA"
Then (2) means that for each 7, the j-th component of ¥? converges to the 7-th component
of ¥. That is, (2) means that
YU=x,Al40 00 + ¥y — y (component-wise)
It is clear that ¥™— X (weakly) implies ¥™—X(componentwise). But as we can see in the

following example, the converse need not to hold.
2
Example. Let ¥ € /, be such that its k-th component is = ™, = ';k{ (?"1_'_—1 )k
Then ¥™ —> x¥=( componentwise as n—>0,

Let € I, be such that its k-th component is ¢k=—,1;,
then
S .
! o om 41
However < X, $>=0
Therefoe <X¥® > does not tend to <X, P>,

That is, ¥ does not converge to ¥=0 weakly as n—>00,

We know that every vector of I, is mapped into ¢, by A if A satisfies the condition (1).
Furthermore A becomes bounded on /; if every vector of /; is mapped into [, by A.

Let C = A®50 be the matrix formed by the entries Cp=| @i, absolute values of the entries
of A=(am).
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Then D(A)=/, when D(C)=l, For suppose that D(C)=/l,, ¥==(%y) €/,. Then since z=
(%) €4,=D (C), we have u=Cz€l,
That is, the vector u with components %=} ayl. ¥l belongs to L,
Thetefore the vector y=AX with components y’=zka’kx“ also belongs to & Hence ¥€D(A):

Next let [,'={¥ €/,] all the components %;=0}
It is evident that D(A)==/, if every vector of {,* is mapped into /,(in this case every
vector of [;" is actually mapped into [, ) by ¢=A%0,
Suppose that a vector ¥= (% )of /,* is mapped to ¥€¢ o by A with non-negative entries
a5 =20. Then
XA« -+%5—>y(component - wise)
That is
X+ XY (B=1, 2, 3yeeveeeersees )
This convergence is uniform with respective to k as one can see from the following theorem,

Theorem 3. Assume that a sequence of vectors of L, Y (n=1,2,3, -+~ ) converges componentwise
to a vector y of Ci. i.e.
(3) Yy—>Ye(n—>0) for all keN= {1, 2, 3 -+ 3
Assume furthermore that the convergence in (3) is increasing one, i.e. Y™ 237 y(n=1, 2,
3, weeees }. Then the convergence in (3) is uniform with respective to k.

Proof Let us assume by contradiction that there are a positive number a as well as two

sequences of positive integers 7(1) <n(2) -+ and %(1), &(2), ++---- such that
(4) Yar— Y p2a(i=1, 2, 3, -+ ).
There are two cases with respective to the sequence k(1), B(2), ++- (A) there are only

finitely many distinct values of (), in this case we may assume without loss of generality that
all the k(7)=Fk ; (B) there are infinitely many distinct values of £(Z), in this case we may assume
without loss of generality that &(7)—>00(j—>00),

Now we will derive a contradiction from (4).
First in the case (A) Y=y —a from(4). Letting 7—>00 we arrive at the conclusion ¥,=y
x—@, which is absurd. Next in the case(B) Sy S Vp—a from(4),
Since ¥' €/,, by letting 7—>00 we arrive at the conclusion 0=0—a, which again is absurd.

Theorem 4. Suppose that a sequence of vectors of lo, Y™ = (¥}, Y™y, +++++) converges componentwise
to a vector of lo, Y=(¥, Y2 Y5, ****** ). If the convergence
[V P2+ | YV l2 4 -oene -0 (g—>x)
s uniform with respective to n, then y™ converges to y strongly.
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Proof. Let &€ be an arbitrarily small positive number. Then we can find a number P such
that '
ol [Jpultt wooeee < & | YO FPpP e <e(m=1, 2, 3, err)
Also we can find 2 number N such that #=2N implies

£ £
'y‘"’l—yllzg—ﬁ-, ,ym)z—‘yz'zé'p_ oo el ';‘
Then when n=N we have
°° &
1Y~y =1y =P+ ooeeee ¥V~ wl*+ ‘;:;J}’wq“hfz§ﬁ . ;'*'45:56
Thoerem 5. Suppose that A satisfies the condition (1), and suppose that all the entries ay,
of A are non-negative, If (%), %, X, «:eee- JELND( then Yy =xA'+XA%+ ..o + XAP
converges strongly.
Proof.There is a vector y=(3, ¥, ¥s ****** ) €/, such that
YO=x, Al +X,AN—>y( component-wise)
And :
=}"mq‘2+|3'(m§+x‘2+ """ é'yq=2+| y‘“’qﬂlz-" —= 0 (Q"“)°°)

That is, the convergence

1Y VP4 Y Pquyli4-+ oo = 0 (g—0)

is uniform with respect to 7. By appealing to Theosem 4 we conclude that ¥P—>¥ strongly.

Corollary. Suppose that A Satisfies the condition (1). If

XESO = (12,[ |X,f, +ereee ) € D(A®®)  then yP=xAl..... +XnA" converges strongly.
Proof. | y®—Ax H=Z‘: Xnn @, nat Xnee Gnetee?
£ X (%l - 1@y, nal+1%nl @, alteeeeee )0 (n—>o0)

since Ja,kigo and ¥8P% e [,*ND(A8b)

Theorem 6. Suppose that A satisfies the condition (1). Then a necessary and sufficient

condition that Y =%A'+ -cee. +XpA" storongly converges for all vector X = (%,, X, X5, +--
os) €1, ts that A should be bounded on I,
Proof. First suppose oghat ¥? converges strongly to some Y==3, ¥, Vs, ***** ) for every X

€l,. Then yeli, y1=k}=; ¥y
&, from theorem (2) we conclude that A is bounded on /,,
Conversely suppose that A is bounded on [, X=(%,, ¥, X----+- ) €l and ¥V=(x, %, %
n 0,0, ).
Then *¥™ converges strongly to ¥ Hense [AZ™—Axi<|A|l - [ —x}->0,
That is, AXP=x,A'4-..... +%nA" converges strongly,
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[I. Norm of an operator

Suppose that A is bounded on /[, Let by=<A! A%>
That is, AYA=(bg) or A* A=(by),
where Atand A are the transposed and the complex conjugate matrices of A respectively, and
A*=A!, Then the following theorem holds,
Theorem 7. Suppose that A is bounded on [,. Then

(i) by=0
(ii) b= E
(iii) lbpi=
(iv) | AlP=sup 2 by %3 %y,
sup being taken for all X = (x,, 20 Xg, *ooee ) of L with | ¥ 1.

Proof. Since 3y=,"A¥; Strongly converges by Theonem 6, we have
| A [P=<A%, Ax>=<FA%, 30 A > =3 <A, ARSI 5 =2hp%; %,
Hence
| A IP=sup | A% |’= sup 3y % % (] ¥ |S1)

Proof of the remaining part is evident.

The value of || A | lies between sup [ AY and /S;kia;klz/z | A*F when A is bounded
on I,
That is,
sup byssup 2 bmx:xkszbu
For when ¥=/p, i.e. when 1ts component X, =0y, we obtain
?kbﬂx %y Xy=byp
Hence
bpp= sup Zb;lk x)}k
Also
mexskaZWmn s+ 1%
3 by 1% 'xkn—(E by |%)})?
g(bu"l"bzz‘+‘ """ ) (|xlz+ xz‘z‘{‘ """ )=Zbu

for an artitrary unit vector ¥=(%y) of /5

Theorem 8. Let A0 be bounded on l,. Then a necessary and sufficient condition that
| Ap= 22 lawl® is that all the column vectors A’ should be parallel to each other.
Proof. First suppose that | A HZZ |@nl®. Then
(5) sup Z buX = A[F—— Z Zlaﬂd _2<Ak Ak>—'¥b:k
Here as well as m the rest of this proof sup is always taken over all unit vectors A=(Ay)
of /,. On the other hand
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(6) sup 3 baXi%S sup 3 [ o] %l - Ind<sup 2V bij o/ xbik b - 1%
< sup( X V& 14)= Zhy T 14P=3b
3
Comparing (5) with (6) we conclude that
(7) sup T lbud - 1%) - d=sup T /0w Vou 1| - id=sup (/o0 %))
But the sup of the R H.S. is Ebu, and occurs when and only when
1%l =20%="(by / , 2by>0, since A%(,
Now A is a compact operator since Ylanl®< oo, [Ref. 1, p. 86).
Therefore B=A'A is a compact self-adjoint operator, Hence | B | =el A |* (e=cither+1 or
—1)} becomes an eigen-value of B, That is, there exists an unit vector € €/, such that

AtAE=Bt=¢| B | £=¢) A | %
Then
<B,, E>=e] AP - ) ¢ P=e] AP
That is,
Sbu by Gl AT
Therefore
(8) VAPSZ bal - 16 - 16l
By comparing (7) 'with (8) we obtain
A PSS ibad - 18] - 6dST /Bjj /Okk 18] - 60 T/by /Bac ©H%=) AP
Hence all the inequality symbol = become equality symbol = in the above formula, and |&)j=
%(j=1, 2, 3, ***). Therefore
(9) Ebmx"x%— 2V bubg ¥ - X0
If some by < »/Eu— /—— , then from (9) *% %% must be 0. However this implies by b
=0 which is absurd, since |by|< /5; /— . Therefore we conclude that
lbnd= 55 ba for all 7, & ,
And this means that all the column vectors A are parallel to each other.
Conversely when A’ are parallel to each other, then the entries ag of A can be written a
k=8 bk, with 2t/*=1, Hence
bu=< A% A¥>=] s | 4 by where | § [P=l5,*+s)*+ o,
Therefore | A || >=sup T bu %) %=1l S I? sup Tty b X, % =} s I sup |T 8 xP*=) s |
DN s |® wherel Hl *=1tP+it1+ - =1 That is,
1A =1 P=3 law/”

Theorem 9. Let A be an arbitrary matriz not necessarily satisfying the condition (1), but
8atzsfymg 2a,k2<°°( =1, 2, ---), And suppose that the row vectors A; are orthogonal to
each other,

t.e. <Ay, Ay> =0 whenever J¥k.
(1) If sup | Ajl<oo, then A i3 bounded on .
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(1) If A is bounded on I, then sup | Ajl<oo, and furthermore sup | Ajj =l A |
Proof.( I ) Suppose that sup | Al <oo,
When a tow vector A; is different from the nulil vector, let us represent it by
(10) A=s; oy, s=| Ayl
Those ¢; form a system of ortho-normal vectors, and for an arbitary
¥ €/, we have (summation being taken over all j with A;¥0)
I AX [P=]| <86y, > PH1<80p x> P4 oeoen
S (sup P (16, X>PHI<ey, X> 4 wooeee
= (sup | Ayf DI x |
Therefore A is bounded on /, and
(11—a) [Al<sup | Al
(II) Suppose that A is bounded on /. Using the representation (10) whenever A0,

A
A P2) A =) 22

;fz— (1<Ay &> +I<Ay Ap>Pper)= —s% |<Ay, A>P= sp=| Aj [P

Hence

(11-5) TA | Zsup 1A |

That is, sup | A |[<oo

Furthermore form (11—a) and (11—b) we obtain
sup 1Al =|[ Al

Theorem 10. Let A be an arbitrary matriz not necessarily satisfying the condition (1), but
satisfying ; lapl*<co (k=1, 2, 3, +=ese- ).
And suppose that the column vectors A* are orthogonal to each other, i.e.

<A, AX> =0 whenever k.
(1) If sup | A* |[<oo, then A is bounded on I,.
(1) If A is bounded on l,, then sup | A* | <oo, and furthermore sup | A¥}=1 41
Proof. Under the assumptions of the theorem the transpose A* of A satisfies the corresponding

assumptions of Theorem 9.
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