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EQUATIONS AX =Y AND Az =y IN ALGCL

YouNnG Soo Jo, Joo Ho KANG, AND DONGWAN PARK

ABSTRACT. Let £ be a subspace lattice on a Hilbert space H and
X and Y be operators acting on a Hilbert space H. Let P be the
projection onto R(X), where RX is the range of X. If PE = EP
for each E € L, then there exists an operator A in AlgL such that
AX =Y if and only if

sup{|E-Y fII/IE*Xf||: f €M, E€ L} =K < co.

Moreover, if the necessary condition holds, then we may choose an
operator A such that AX =Y and ||A|| = K.

Let z and y be vectors in H and let P be the projection onto
the singlely generated space by z. If P, E = EP; for each E € L,
then the assertion that there exists an operator A in Algl such
that Az = y is equivalent to the condition

Ko :=sup{|| E*y[l/||E*all : E € L} < co.

Moreover, we may choose an operator A such that ||A|| = Ko whose
norm is Kg under this case.

1. Introduction

Let H be a Hilbert space and B(H) be the class of all bounded opera-
tors acting on H. A subspace is a closed linear manifold and we identify
the subspace with the orthogonal projection whose range it is. If £ is
a collection of projections that is closed under the operations of meet
and join, then it is a lattice. A subspace lattice L is a strongly closed
lattice of orthogonal projections on H containing the trivial projections
0 and I. The symbol AlgL denotes the algebra of bounded operators on
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‘H that leave invariant all projections in £; AlgC is a weakly closed sub-
algebra of B(H). A lattice £ is a commutative subspace lattice, or CSL,
if the projections in £ all commute; in this case, Algl is called a CSL
algebra. Let z1,...,x, be vectors of H. Then the generating space by
{z1,...,z,}is the set {onz1+ ozt +anZn : a1,02,...,a, EC}.
Let M be a subset of H. Then M means the closure of M and —Ml the
orthogonal complement of M. Let N be the set of natural numbers and
C be the set of complex numbers.

Let X and Y be operators acting on ‘H and A be a subalgebra of
B(H). An interpolation problem for A is that given two operators X
and Y, under what conditions can we be sure that there is an operator
A in A such that AX = Y? And we consider the above problem for
finite and countable operators X; and Y;(i = 1,2,...).

Given two vectors z and y in H, when is there an operator A in A
that maps z to y? In [3], the problem is studied under the conditions
that £ is a commutative subspace lattice on ‘H and X is an operator of
rank 0 or 1 acting on H. Let R(X) be the range of X. In [5] and [6],
authors considered it when R(X) is dense in H and have investigated
the interpolation problem for Algl with strong desire for finding weaker
conditions than the dense range of X. In this paper, we obtain a con-
dition that we wanted to find. We introduce a history of interpolation
problems to know how it is developed.

The simplest case of the operator interpolation problem relaxes all
restrictions on A, requiring it simply to be a bounded operator. In this
case, the existence of A is nicely characterized by the well-known fac-
torization theorem.

THEOREM A. (R. G. Douglas [2]) Let X and Y be bounded oper-
ators acting on a Hilbert space H. Then the following statements are
equivalent:

(1) R(Y*) C R(X");

(2) Y*Y < A2X*X for some \ > 0;

(3) there exists a bounded operator A on ‘H so that AX =Y.
Moreover, if (1),(2), and (3) are valid, then there exists a unique oper-
ator A so that

(a) [AJ? = inf{p: Y*Y < pX*X}

(b) ker Y* = ker A* and

(c) R(A*) S R(X™).

We need to look at the proof of Theorem A carefully. Then we know
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that the image of A on R(X )J' is 0 from the proof of (3) by (2).

In [8), Katsoulis, Moore and Trent found a necessary and sufficient
condition of the existence of an interpolation operator A for a nest al-
gebra. That is, the following:

(%) sup{HEJ‘YfH/HEJ‘XfH:fEHandEEN}=K<oo,

where we use the convention 3 = (), when necessary.

In (3], Hopenwasser found a result that, if X is rank-one or zero, then
the condition () is also sufficient for a commutative subspace lattice
on H. In [10], Moore and Trent showed that the condition (x) is a
necessary and sufficient condition that there exists an operator A in
AlgL such that AX =Y where £ is a commutative subspace lattice. In
[5], Jo and Kang obtained a necessary and sufficient condition for the
interpolation problem in Algl .

THEOREM B. (Jo, Kang [5]) Let £ be a subspace lattice on H. Let
X andY be operators in B(H). Assume that R(X) is dense in H. Then
the following statements are equivalent:

(1) There exists an operator A in AlgL such that AX =Y and every
EinL reducens A.

@) sup{|| > EY£l/I>_EXfill:neN,E €L and f; € H} < o0,
i=1 i=1
In [6], the authors showed the condition (x) is a necessary and suf-
ficient condition for the interpolation problem in Algl when R(X) is
dense in H and L is a subspace lattice on H.

2. The equation AX =Y in Algl

We use the convention g = 0, when necessary.

THEOREM 2.1. Let L be a subspace lattice on H and let X and Y
be operators acting on H. Let P be the projection onto the R(X). If
PE = EP for each E € L, then the following are equivalent:

(1) There exists an operator A in AlgC such that AX =Y.

(2) sup{|E*Y fII/IE-XfIl: f €M, E€ L} =K < 0.

Proof. Assume that sup{|[E*Y f|/|E*Xfl : fEH,E€ L} =K < 0.
Then for each F in L, there exists an operator Ag in B(H) such that
Ag(E+X) = E*Y and ||Ag| € K by Theorem A. In particular, if
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E =0, then we have an operator A in B(H) such that AoX =Y and
4ol < K. So Ag(ELX) = E'Y = E'AyX. Since PE = EP for
each E € L, AgE+ = E+ A, on H. For, since AE(ELX) = ElY =
EL(AoX), ApEL = E+ Ay on R(X) for each E in £. Let E be in £
and f € m_)l. Then for any g € H, (f,E+Xg) = (f,E+tPXg) =
<f, PEng> = 0. Also by the definition of Ag, EtAgf = 0. Hence

ApEth =0 = EL Aok for h € (R(X) N E*) + (R(X) N E). Since

PE = EP, P*E = EP+, PLE and P1E* are projections onto R(X)
NE and R(X )J' N E+, respectively. Hence

RX) NEY) + (R(X) NE)= PLE* + P'E
= P*Et @ P'E
= PL(E* 9 E)= P

Therefore AgE+ = E+ A on H.
For each E in L,

E1tAQEY = AgEYtE! = AgE+ = E1 A, .

So Ag is an operator in AlgL.

If (1) is assumed, then AX =Y and E*AEL = E*Aforall E € L.
So for any vector f, since ELAE*X = E1Y, EYAE+Xf = ELYf.
Hence

IEY fIl < IBANE-X £l < 1ANIIESX 7l
for all E € £ and all f € H. So

sup{|E*Y F|/IE* X f||: f € H, E € L} < o0. 0

In [10], authors induced the second condition of Theorem 2.1 for the
interpolation problem in AlgL under the condition that R(X) is dense
in H and £ is a commutative subspace lattice. We proved it without the
dense range condition and commutative condition of £ in Theorem 2.1.
We give two examples to compare a difference between the Theorem in
[10] and Theorem 2.1.

Let P be the projection onto the R(X).

ExaMpPLE 1. Let H be a Hilbert space with an orthonormal basis
{e1,ez,€e3,...}. Let Lo be the subspace lattice generated by {[eak—1],
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[e2k—1, €2k, €2k41] : K = 1,2,...}. Then AlgLy is the collection of all
matrices of the following form '

where non-starred entries are zero.

AlgL, is called a tridiagonal algebra. If R(X) is dense, then P = I.
But if X is an operator and PE = EP for every E in £ , then all of
off-diagonal entries are zero.

EXAMPLE 2. Let H = [e1,ez2,e3,...] and let Ey = 0 and E, =
le1,€e2,...,e,]. Let £ be the subspace lattice generated by {E, | n
0,1,2,... }. Then A € AlgL iff A has the form

* X X X X ¥
* X X X K *
* K X X ¥ K

where non-starred entries are zero.

If R(X) is dense, then P = I. And if PE = EP for every E in L,
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then P has the following form

where non-starred entries are zero.

THEOREM 2.2. Let X,,...,X, and Y;,...,Y, be bounded opera-
tors acting on H. Let P; be the projection onto R(X;) for all j =
1,2,...,n. If P.E = EP;, for some k in {1,2,... ,n}, then the follow-
ing are equivalent:

(1) There exists an operator A in AlgL such that AX;, =Y, for
i=1,2,...,n.

2) sup{||E+Q_VifI/NEL O Xif)ll - fi € H, E€ L} = K < oo.

i=1 t=1

THEOREM 2.3. Let X; and Y; be bounded operators acting on ‘H for
alli=1,2,.... Let P; be the projection onto R(X;) forall j =1,2,....
If PLE = EP;, for some k in N, then the following are equivalent:

(1) There exists an operator A in AlgC such that AX; =Y, for
i=1,2,....

2) sup{| E*Q_YifI/NE*(Q_Xifi)| : fie H, E€ L, me N} =
i=1 i=1

K < co.

Proof. If we assume that there is an operator A in Algl such that
AX;=Y;fori=1,2,...,thenfor f; e H, E€ L and m € N,

1B Yif)ll = 1EL O AXif)ll = | B A X fo)l
1=1 =1

=1

< ||ElAEl(Z Xsfo)ll

=1

< |E-ANEQ Xifo)l

=1
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< IANE (D Xifol.

i=1

If | B (320, X f:)| is not zero, then
1B Vil /IE (D Xaf)ll < 1Al
i=1 =1

Otherwise, we use the convention % =0. So

sup{||EL(Z }/;fz)ll/llEl(Z Xifil:fieH, E€ L, meN}<oo.
i=1 i=1
Conversely, we assume that

m m
sup{|B-(X VeI (L Xefll i e M, B € £,meN)
i=1 i=1
=K < 0.
Then for each F in £, there exists an operator Ag in B(H) such that
Ap(E*+X;) = ELY; fori = 1,2,... and ||Ag|| < K by Theorem A. In
particular, if E = 0, then we have an operator Ag in B(H) such that
AoX; =Y, fori =1,2,... and ||Ag|| < K. So Ag(E+X;) = E1Y; =
E+ApX;. Since P E = EP; for some k € {1,2,...}, for each E € L,
AgEt = E1Ay on H. For, since Ap(E1X;) = E1Y; = EL(AX,),
ApE+ = E1 Ay on R(X;) for each E in £ and i = 1,2,.... We as-
sumed that PrE = EP; for some k € {1,2,...}. Let E be in £ and
f € R(Xz)". Then for any g € H, (f,E*Xrg) = (f, BLPcXyxg) =
(f, PE*+Xyg) = 0. Also by the definition of Ag, E+Aof = 0. Hence
— R
AgBLf = 0 = EXAof for f € (R(Xn) NEY) + (R(X%) N E).
Since PtE = EPy, PLE = EP}, P}FE and P}E' are projections
onto R(Xk)l N E and R(X;c)l N EL, respectively. Hence
(R(Xe) NEY + (R(Xp) NE)=PrE'+PLE
=P'EtoPE
=PH(Et®E) =P .

Therefore AgE+ = E+Ag on H.
For each F in L,

EtAgE*+ = AgE+E* = AgE* = E+ 4 .
So Ag is an operator in AlgC. O
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3. The equation Ar =y in Algl

Assume that z and y are vectors in H and A is an operator in
Algl such that Az = y. Then |[Ely| = |EtAz| = |[ELtAE 7| <
A E+z| for all E € L. If, for convenience, we adopt the convention
that a fraction whose numerator and denominator are both zero is equal
to zero, then the above inequality may be stated in the form

[Fll

sup < || A]].

AT
We consider the above fact when £ is a subspace lattice without the
commutative condition.

LEMMA 3.1. Let X and Y be operators in B(H) and let x and y be
vectors in H. Then the following are equivalent:

(1) There exists an operator A in B(H) such that AXz =Yy.

(2) Y| < Mol Xzl, where Ao = inf{X: | Y]l < Al Xz}
Moreover, if condition (2) holds, we may choose an operator A such that
1 All = Ao

Proof. Assume that

1Yyl <ol X[,

where Ao =inf {\ : ||[Yy||<A|| Xz|}. Let M = {aXz:a € C}. Then M
is a linear manifold. Define A: M — H by A(aXz) =aYy. Then A is

well-defined by the assumption. Define Ag = 0 for all g in WA—'L. Then
A is an operator acting on H and AXz =Yy.
If Xz # 0, then

1Yyl
Al = o <
[ Xa]|
Since [|Yyll = [|AXal| < Al Xll, %o < 4]l So [IA] = do.
The proof of the converse is obvious. O
LEMMA 3.2. Letz1,%o,... ,%, andyy,y2,. .. ,Yn be vectors in H and

let X and Y be operators in B(H). Then the following are equivalent:
(1) There exists an operator A in B(H) such that AXxz; = Yy; for
i=1,2,...,n.

n n
(2) sup{|| Z%’Yyi“/“ Z%‘Xﬂ%“ ta; €C= A< 00.
i=1 i=1
Moreover, if condition (2) holds, we may choose an operator A such that
LAl = A
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Proof. Assume that
sup{]| ZaiYyiH/H ZaiXa:iH ra; €CH= X< 0.
=1 i=1
Then

n n
(%) HzaiYyill S)\”ZaiXmiH for o; € C.

i=1 i=1
n
Let Nx = {Z a; Xz; : a; € C }. Then Nx is a linear manifold. Define
i=1
A:Nx — Hby
A(Z (,YlX.’,Cz) = Z OJzsz
i=1 i=1

Then A is well-defined by (*x). Define Ag = 0 for all g in Nk
Then A is an operator in B(H) and AXz; = Yy (i = 1,2,... ,n). If
S i Xx; # 0, then

Al = sup{]| Y ou¥zi|l/|| > s Xl : s € C} <A
i=1 i=1

Since
n n n
1Y eiYuill = 1AQ aiXzo)ll < AN D caXaall, X < Al
=1 i=1 =1
So ||A]| = A. The proof of the converse is obvious. O

We can extend this fact to the countable case.

LemMA 3.3. Let x1,xs,... and 11,%s,... be vectors in H and X and
Y be operators in B(H). Then the following are equivalent:

(1) There exists an operator A in B(H) such that AXz, = Yy, for
n € N.

(2) sup{|| > asYyll/Il Y ciXai|l : ;i € C and n € N} = A < 0.
=1 i=1
Moreover, if condition (2) holds, we may choose an operator A such that

IAJF = A.

From Lemmas 3.1, 3.2 and 3.3, we can obtain generalized results on
the interpolation problems in Alg/L.
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THEOREM 3.4. Let L be a subspace lattice on H and let x and y be
vectors in H. Let P, be the projection onto sp(z). If P,FE = EP, for
each E € L, then the following are equivalent:

(1) There exists an operator A in AlgL such that Az = y.

(2) sup{|Ety|l/||E*z||: E€ L} =Ky < 0.

Moreover, if condition (2) holds, we may choose an operator A such that
1Al = Ko. .

Proof. Assume that sup {|[E'y|//|Etz|: E €L} = Ko < 00. By
Lemma 3.1, for each E in L, there exists an operator Ag in B(H) such
that Ag(FE+z) = E1y and ||Ag| < Kp. In particular, if E = 0, then we
have an operator Ag in B(H) such that Agz =y and ||Ag|| < Ko. Then
for each E € £, AgE+x = Ety = E+ Agz. Hence AgE+ = E+A4g on
sp(z). And for each E in £, AgE1th =0 for h in sp(z)™.

For, let E be in £ and k be in sp(z)™. Then

(E*h,E+z) = (h, Et2) = (h, E* P,z)
= (h, P,E*z) = (P;h,E*z) =0.
Hence E+h € sp(E+z)* for h € sp(z)t. Since Ag g = 0 for all g in
sp(E+z)t, AgE+R =0.
By the definition of the operator Ag, E+Agh = 0 for h € sp(z)*.

Hence AgE+h =0 = ELAph for h € sp(a:)l. So ApE+ = E+ Ay, Let
FE bein £. Then

EtAyE*+ = AgE+E+ = AgE*- = E* A, .
So Ag is an operator in AlgL. Since Agz =y and ELAgEL = E+ Ay,
IEy| = | E+ Aozl = | E- Ao E*a) < || Aol E+=).

So Ky < ||Ap||. Therefore [[Ag]] = Kp.
The proof of the converse is obvious. O

THEOREM 3.5. Let L be a subspace lattice on H and let x1,x2,. ..,
n
ZTn and y1,Y2,...,Yn be vectors in H. Let M = {Z oz 0 o € C

i=1
and Paq be the projection onto M. If Ppy/E = EPp for each B € L,
then the following are equivalent:
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(1) There exists an operator A in Algl such that Az; = y; for i =
1,2,...,n.
n n
(2) sup{|| Y uE*yill/|I Y ciE*zil| : E€ L, a; € C} = Ko < o0.

i=1 i=1
Moreover, if condition (2) holds, we may choose an operator A such that
Al = Ko.

Proof. Suppose that

n n
sup{|| zaiEJ‘y,-H/H ZaiElxiH : Eel, a; € C} = Ky < 00.

Let E be in £L. Then by Lemma 3.2, there exists an operator Ag in
B(H) such that AgEtx; = Ety; fori = 1,2,...,n. If E = 0, then
Agz; =y; fori =1,2,... ,n. So AgEtz; = E+y; = ELtAgx; for each
1=1,2,...,n. Hence

AEEJ'(zn: aixi) = i aiAEEin = En: aiElyi
=1 i=1 i=1
= Zn: OtiEJ'A()iL‘i
i=1
= Ele(zn: o T;).

=1

Therefore ApE+ = E+ Ay on M.
Let h € M~L. Then

<Elh, iEJ‘w> = i (h, E*x;)

=1 =1

n
= {h, E* Ppma;)
=1

n n
=Y (h,PmBra) = (Pmh,E*z;) =0.
i=1

i=1

So Eth € N, where N = sp{E+z1, Etxa,... ,ELz,}. Since Apg =0
for all g in N+, AgE+h =0.
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Hence E+Ag = AgE+ for all E in L.
For each F € L,

ELAWE' = ARpE+E+ = AgE+ = E* A,.

Hence Ay €Algl. Moreover, since Agz; = y; for i = 1,2,...,n and
ELAgE* = E* A,

So

[1]

(2l
(3]

(4]

1> e Bt il = | > Bt Agzi|
i=1 i=1

= || iaiEJ‘AoEinH
i=1
= ||ELA0(‘Z ai Btz < [ Aol iaiELﬂfiH-
i=1 i=1
Ky < ||Ap||- Hence || Ao|| = Ko. O
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