EQUATIONS AX = Y AND Ax = y IN ALG \mathcal{L}

Young Soo Jo, Joo Ho Kang, and Dongwan Park

ABSTRACT. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and X and Y be operators acting on a Hilbert space \mathcal{H} . Let P be the projection onto $\overline{\mathcal{R}(X)}$, where $\mathcal{R}X$ is the range of X. If PE = EP for each $E \in \mathcal{L}$, then there exists an operator A in $Alg\mathcal{L}$ such that AX = Y if and only if

$$\sup\{\|E^{\perp}Yf\|/\|E^{\perp}Xf\|: f \in \mathcal{H}, \ E \in \mathcal{L}\} = K < \infty.$$

Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ||A|| = K.

Let x and y be vectors in \mathcal{H} and let P_x be the projection onto the singlely generated space by x. If $P_xE=EP_x$ for each $E\in\mathcal{L}$, then the assertion that there exists an operator A in $\mathrm{Alg}\mathcal{L}$ such that Ax=y is equivalent to the condition

$$K_0 := \sup\{\|E^{\perp}y\|/\|E^{\perp}x\|: E \in \mathcal{L}\} < \infty.$$

Moreover, we may choose an operator A such that $||A|| = K_0$ whose norm is K_0 under this case.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ be the class of all bounded operators acting on \mathcal{H} . A subspace is a closed linear manifold and we identify the subspace with the orthogonal projection whose range it is. If \mathcal{L} is a collection of projections that is closed under the operations of meet and join, then it is a lattice. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections on \mathcal{H} containing the trivial projections 0 and I. The symbol $\mathrm{Alg}\mathcal{L}$ denotes the algebra of bounded operators on

Received January 31, 2005. Revised June 28, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: interpolation problem, subspace lattice, $alg\mathcal{L}$, CSL- $alg\mathcal{L}$.

 \mathcal{H} that leave invariant all projections in \mathcal{L} ; Alg \mathcal{L} is a weakly closed subalgebra of $\mathcal{B}(\mathcal{H})$. A lattice \mathcal{L} is a commutative subspace lattice, or CSL, if the projections in \mathcal{L} all commute; in this case, Alg \mathcal{L} is called a CSL algebra. Let x_1, \ldots, x_n be vectors of \mathcal{H} . Then the generating space by $\{x_1, \ldots, x_n\}$ is the set $\{\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n : \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C} \}$. Let M be a subset of \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of natural numbers and \mathbb{C} be the set of complex numbers.

Let X and Y be operators acting on \mathcal{H} and \mathcal{A} be a subalgebra of $\mathcal{B}(\mathcal{H})$. An interpolation problem for \mathcal{A} is that given two operators X and Y, under what conditions can we be sure that there is an operator A in \mathcal{A} such that AX = Y? And we consider the above problem for finite and countable operators X_i and Y_i (i = 1, 2, ...).

Given two vectors x and y in \mathcal{H} , when is there an operator A in \mathcal{A} that maps x to y? In [3], the problem is studied under the conditions that \mathcal{L} is a commutative subspace lattice on \mathcal{H} and X is an operator of rank 0 or 1 acting on \mathcal{H} . Let $\mathcal{R}(X)$ be the range of X. In [5] and [6], authors considered it when $\mathcal{R}(X)$ is dense in \mathcal{H} and have investigated the interpolation problem for $\text{Alg}\mathcal{L}$ with strong desire for finding weaker conditions than the dense range of X. In this paper, we obtain a condition that we wanted to find. We introduce a history of interpolation problems to know how it is developed.

The simplest case of the operator interpolation problem relaxes all restrictions on A, requiring it simply to be a bounded operator. In this case, the existence of A is nicely characterized by the well-known factorization theorem.

THEOREM A. (R. G. Douglas [2]) Let X and Y be bounded operators acting on a Hilbert space \mathcal{H} . Then the following statements are equivalent:

- (1) $\mathcal{R}(Y^*) \subseteq \mathcal{R}(X^*);$
- (2) $Y^*Y \leq \lambda^2 X^*X$ for some $\lambda \geq 0$;
- (3) there exists a bounded operator A on \mathcal{H} so that AX = Y. Moreover, if (1), (2), and (3) are valid, then there exists a unique operator A so that
 - (a) $||A||^2 = \inf\{\mu : Y^*Y \le \mu X^*X\}$
 - (b) $\ker Y^* = \ker A^*$ and
 - (c) $\mathcal{R}(A^*) \subseteq \mathcal{R}(X^-)$.

We need to look at the proof of Theorem A carefully. Then we know

that the image of A on $\overline{\mathcal{R}(X)}^{\perp}$ is 0 from the proof of (3) by (2).

In [8], Katsoulis, Moore and Trent found a necessary and sufficient condition of the existence of an interpolation operator A for a nest algebra. That is, the following:

(*)
$$\sup\{\|E^{\perp}Yf\|/\|E^{\perp}Xf\|: f \in \mathcal{H} \text{ and } E \in \mathcal{N}\} = K < \infty,$$

where we use the convention $\frac{0}{0} = 0$, when necessary.

In [3], Hopenwasser found a result that, if X is rank-one or zero, then the condition (*) is also sufficient for a commutative subspace lattice on \mathcal{H} . In [10], Moore and Trent showed that the condition (*) is a necessary and sufficient condition that there exists an operator A in $\mathrm{Alg}\mathcal{L}$ such that AX = Y where \mathcal{L} is a commutative subspace lattice. In [5], Jo and Kang obtained a necessary and sufficient condition for the interpolation problem in $\mathrm{Alg}\mathcal{L}$.

THEOREM B. (Jo, Kang [5]) Let \mathcal{L} be a subspace lattice on \mathcal{H} . Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Assume that $\mathcal{R}(X)$ is dense in \mathcal{H} . Then the following statements are equivalent:

(1) There exists an operator A in $Alg\mathcal{L}$ such that AX = Y and every E in \mathcal{L} reduces A.

(2)
$$\sup\{\|\sum_{i=1}^n E_i Y f_i\|/\|\sum_{i=1}^n E_i X f_i\| : n \in \mathbb{N}, E \in \mathcal{L} \text{ and } f_i \in \mathcal{H}\} < \infty.$$

In [6], the authors showed the condition (*) is a necessary and sufficient condition for the interpolation problem in $Alg\mathcal{L}$ when $\mathcal{R}(X)$ is dense in \mathcal{H} and \mathcal{L} is a subspace lattice on \mathcal{H} .

2. The equation AX = Y in $Alg \mathcal{L}$

We use the convention $\frac{0}{0} = 0$, when necessary.

THEOREM 2.1. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X and Y be operators acting on \mathcal{H} . Let P be the projection onto the $\overline{\mathcal{R}(X)}$. If PE = EP for each $E \in \mathcal{L}$, then the following are equivalent:

- (1) There exists an operator A in Alg \mathcal{L} such that AX = Y.
- (2) $\sup\{\|E^{\perp}Yf\|/\|E^{\perp}Xf\|: f \in \mathcal{H}, E \in \mathcal{L}\} = K < \infty.$

Proof. Assume that $\sup\{\|E^{\perp}Yf\|/\|E^{\perp}Xf\|: f \in \mathcal{H}, E \in \mathcal{L}\} = K < \infty$. Then for each E in \mathcal{L} , there exists an operator A_E in $\mathcal{B}(\mathcal{H})$ such that $A_E(E^{\perp}X) = E^{\perp}Y$ and $\|A_E\| \leq K$ by Theorem A. In particular, if

E=0, then we have an operator A_0 in $\mathcal{B}(\mathcal{H})$ such that $A_0X=Y$ and $\|A_0\| \leq K$. So $A_E(E^{\perp}X)=E^{\perp}Y=E^{\perp}A_0X$. Since PE=EP for each $E\in\mathcal{L}$, $A_EE^{\perp}=E^{\perp}A_0$ on \mathcal{H} . For, since $A_E(E^{\perp}X)=E^{\perp}Y=E^{\perp}(A_0X)$, $A_EE^{\perp}=E^{\perp}A_0$ on $\overline{\mathcal{R}(X)}$ for each E in \mathcal{L} . Let E be in \mathcal{L} and $f\in\overline{\mathcal{R}(X)}^{\perp}$. Then for any $g\in\mathcal{H}$, $\langle f,E^{\perp}Xg\rangle=\langle f,E^{\perp}PXg\rangle=\langle f,PE^{\perp}Xg\rangle=0$. Also by the definition of A_0 , $E^{\perp}A_0f=0$. Hence $A_EE^{\perp}h=0=E^{\perp}A_0h$ for $h\in(\overline{\mathcal{R}(X)}^{\perp}\cap E^{\perp})+(\overline{\mathcal{R}(X)}^{\perp}\cap E)$. Since PE=EP, $P^{\perp}E=EP^{\perp}$, $P^{\perp}E$ and $P^{\perp}E^{\perp}$ are projections onto $\overline{\mathcal{R}(X)}^{\perp}\cap E$ and $\overline{\mathcal{R}(X)}^{\perp}\cap E$, respectively. Hence

$$(\overline{\mathcal{R}(X)}^{\perp} \cap E^{\perp}) + (\overline{\mathcal{R}(X)}^{\perp} \cap E) = P^{\perp}E^{\perp} + P^{\perp}E$$

$$= P^{\perp}E^{\perp} \oplus P^{\perp}E$$

$$= P^{\perp}(E^{\perp} \oplus E) = P^{\perp}.$$

Therefore $A_E E^{\perp} = E^{\perp} A_0$ on \mathcal{H} . For each E in \mathcal{L} ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0$$

So A_0 is an operator in Alg \mathcal{L} .

If (1) is assumed, then AX = Y and $E^{\perp}AE^{\perp} = E^{\perp}A$ for all $E \in \mathcal{L}$. So for any vector f, since $E^{\perp}AE^{\perp}X = E^{\perp}Y$, $E^{\perp}AE^{\perp}Xf = E^{\perp}Yf$. Hence

$$\|E^{\perp}Yf\| \leq \|E^{\perp}A\| \|E^{\perp}Xf\| \leq \|A\| \|E^{\perp}Xf\|$$

for all $E \in \mathcal{L}$ and all $f \in \mathcal{H}$. So

$$\sup\{\|E^{\perp}Yf\|/\|E^{\perp}Xf\|: f \in \mathcal{H}, E \in \mathcal{L}\} < \infty.$$

In [10], authors induced the second condition of Theorem 2.1 for the interpolation problem in $Alg\mathcal{L}$ under the condition that $\mathcal{R}(X)$ is dense in \mathcal{H} and \mathcal{L} is a commutative subspace lattice. We proved it without the dense range condition and commutative condition of \mathcal{L} in Theorem 2.1. We give two examples to compare a difference between the Theorem in [10] and Theorem 2.1.

Let P be the projection onto the $\overline{\mathcal{R}(X)}$.

EXAMPLE 1. Let \mathcal{H} be a Hilbert space with an orthonormal basis $\{e_1, e_2, e_3, \dots\}$. Let \mathcal{L}_{∞} be the subspace lattice generated by $\{[e_{2k-1}],$

 $[e_{2k-1}, e_{2k}, e_{2k+1}]: k = 1, 2, \dots$. Then $Alg \mathcal{L}_{\infty}$ is the collection of all matrices of the following form

where non-starred entries are zero.

 $\mathrm{Alg}\mathcal{L}_{\infty}$ is called a *tridiagonal algebra*. If $\mathcal{R}(X)$ is dense, then P=I. But if X is an operator and PE=EP for every E in \mathcal{L} , then all of off-diagonal entries are zero.

EXAMPLE 2. Let $\mathcal{H} = [e_1, e_2, e_3, \dots]$ and let $E_0 = 0$ and $E_n = [e_1, e_2, \dots, e_n]$. Let \mathcal{L} be the subspace lattice generated by $\{E_n \mid n = 0, 1, 2, \dots\}$. Then $A \in \text{Alg}\mathcal{L}$ iff A has the form

where non-starred entries are zero.

If $\mathcal{R}(X)$ is dense, then P = I. And if PE = EP for every E in \mathcal{L} ,

then P has the following form

where non-starred entries are zero.

THEOREM 2.2. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be bounded operators acting on \mathcal{H} . Let P_j be the projection onto $\overline{\mathcal{R}(X_j)}$ for all $j = 1, 2, \ldots, n$. If $P_k E = E P_k$ for some k in $\{1, 2, \ldots, n\}$, then the following are equivalent:

(1) There exists an operator A in Alg \mathcal{L} such that $AX_i = Y_i$ for i = 1, 2, ..., n.

(2)
$$\sup\{\|E^{\perp}(\sum_{i=1}^{n}Y_{i}f_{i})\|/\|E^{\perp}(\sum_{i=1}^{n}X_{i}f_{i})\|: f_{i} \in \mathcal{H}, E \in \mathcal{L}\} = K < \infty.$$

THEOREM 2.3. Let X_i and Y_i be bounded operators acting on \mathcal{H} for all $i = 1, 2, \ldots$ Let P_j be the projection onto $\overline{\mathcal{R}(X_j)}$ for all $j = 1, 2, \ldots$ If $P_k E = E P_k$ for some k in \mathbb{N} , then the following are equivalent:

(1) There exists an operator A in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \ldots$

(2)
$$\sup\{\|E^{\perp}(\sum_{i=1}^{m}Y_{i}f_{i})\|/\|E^{\perp}(\sum_{i=1}^{m}X_{i}f_{i})\|: f_{i} \in \mathcal{H}, E \in \mathcal{L}, m \in \mathbb{N}\} = K < \infty.$$

Proof. If we assume that there is an operator A in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for i = 1, 2, ..., then for $f_i \in \mathcal{H}$, $E \in \mathcal{L}$ and $m \in \mathbb{N}$,

$$||E^{\perp}(\sum_{i=1}^{m} Y_i f_i)|| = ||E^{\perp}(\sum_{i=1}^{m} A X_i f_i)|| = ||E^{\perp} A(\sum_{i=1}^{m} X_i f_i)||$$

$$\leq ||E^{\perp} A E^{\perp}(\sum_{i=1}^{m} X_i f_i)||$$

$$\leq ||E^{\perp} A|| ||E^{\perp}(\sum_{i=1}^{m} X_i f_i)||$$

$$\leq ||A|| ||E^{\perp}(\sum_{i=1}^{m} X_i f_i)||.$$

If $||E^{\perp}(\sum_{i=1}^{m} X_i f_i)||$ is not zero, then

$$||E^{\perp}(\sum_{i=1}^{m} Y_i f_i)||/||E^{\perp}(\sum_{i=1}^{m} X_i f_i)|| < ||A||.$$

Otherwise, we use the convention $\frac{0}{0} = 0$. So

$$\sup\{\|E^{\perp}(\sum_{i=1}^{m}Y_{i}f_{i})\|/\|E^{\perp}(\sum_{i=1}^{m}X_{i}f_{i})\|:f_{i}\in\mathcal{H},\ E\in\mathcal{L},\ m\in\mathbb{N}\}<\infty.$$

Conversely, we assume that

$$\sup\{\|E^{\perp}(\sum_{i=1}^{m} Y_{i}f_{i})\|/\|E^{\perp}(\sum_{i=1}^{m} X_{i}f_{i})\|: f_{i} \in \mathcal{H}, E \in \mathcal{L}, m \in \mathbb{N}\}$$

$$= K < \infty.$$

Then for each E in \mathcal{L} , there exists an operator A_E in $\mathcal{B}(\mathcal{H})$ such that $A_E(E^\perp X_i) = E^\perp Y_i$ for $i=1,2,\ldots$ and $\|A_E\| \leq K$ by Theorem A. In particular, if E=0, then we have an operator A_0 in $\mathcal{B}(\mathcal{H})$ such that $A_0X_i = Y_i$ for $i=1,2,\ldots$ and $\|A_0\| \leq K$. So $A_E(E^\perp X_i) = E^\perp Y_i = E^\perp A_0 X_i$. Since $P_k E = E P_k$ for some $k \in \{1,2,\ldots\}$, for each $E \in \mathcal{L}$, $A_E E^\perp = E^\perp A_0$ on \mathcal{H} . For, since $A_E(E^\perp X_i) = E^\perp Y_i = E^\perp (A_0 X_i)$, $A_E E^\perp = E^\perp A_0$ on $\overline{\mathcal{R}(X_i)}$ for each E in \mathcal{L} and $i=1,2,\ldots$. We assumed that $P_k E = E P_k$ for some $k \in \{1,2,\ldots\}$. Let E be in \mathcal{L} and $f \in \overline{\mathcal{R}(X_k)}^\perp$. Then for any $g \in \mathcal{H}$, $\langle f, E^\perp X_k g \rangle = \langle f, E^\perp P_k X_k g \rangle = \langle f, P_k E^\perp X_k g \rangle = 0$. Also by the definition of A_0 , $E^\perp A_0 f = 0$. Hence $A_E E^\perp f = 0 = E^\perp A_0 f$ for $f \in (\overline{\mathcal{R}(X_k)}^\perp \cap E^\perp) + (\overline{\mathcal{R}(X_k)}^\perp \cap E)$. Since $P_k E = E P_k$, $P_k^\perp E = E P_k^\perp$, $P_k^\perp E$ and $P_k^\perp E^\perp$ are projections onto $\overline{\mathcal{R}(X_k)}^\perp \cap E$ and $\overline{\mathcal{R}(X_k)}^\perp \cap E^\perp$, respectively. Hence

$$\begin{split} (\overline{\mathcal{R}(X_k)}^{\perp} \cap E^{\perp}) + (\overline{\mathcal{R}(X_k)}^{\perp} \cap E) &= P_k^{\perp} E^{\perp} + P_k^{\perp} E \\ &= P_k^{\perp} E^{\perp} \oplus P_k^{\perp} E \\ &= P_k^{\perp} (E^{\perp} \oplus E) = P_k^{\perp}. \end{split}$$

Therefore $A_E E^{\perp} = E^{\perp} A_0$ on \mathcal{H} .

For each E in \mathcal{L} ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0.$$

So A_0 is an operator in $Alg \mathcal{L}$.

3. The equation Ax = y in $Alg \mathcal{L}$

Assume that x and y are vectors in \mathcal{H} and A is an operator in $Alg\mathcal{L}$ such that Ax = y. Then $||E^{\perp}y|| = ||E^{\perp}Ax|| = ||E^{\perp}AE^{\perp}x|| \le ||A|| ||E^{\perp}x||$ for all $E \in \mathcal{L}$. If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the above inequality may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} \le \|A\|.$$

We consider the above fact when \mathcal{L} is a subspace lattice without the commutative condition.

LEMMA 3.1. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$ and let x and y be vectors in \mathcal{H} . Then the following are equivalent:

- (1) There exists an operator A in $\mathcal{B}(\mathcal{H})$ such that AXx = Yy.
- (2) $||Yy|| \le \lambda_0 ||Xx||$, where $\lambda_0 = \inf\{\lambda : ||Yy|| \le \lambda ||Xx||\}$. Moreover, if condition (2) holds, we may choose an operator A such that $||A|| = \lambda_0$.

Proof. Assume that

$$||Yy|| \leq \lambda_0 ||Xx||,$$

where $\lambda_0 = \inf \{\lambda : ||Yy|| \le \lambda ||Xx|| \}$. Let $\mathcal{M} = \{\alpha Xx : \alpha \in \mathbb{C}\}$. Then \mathcal{M} is a linear manifold. Define $A : \mathcal{M} \to \mathcal{H}$ by $A(\alpha Xx) = \alpha Yy$. Then A is well-defined by the assumption. Define Ag = 0 for all g in $\overline{\mathcal{M}}^{\perp}$. Then A is an operator acting on \mathcal{H} and AXx = Yy.

If $Xx \neq 0$, then

$$||A|| = \frac{||Yy||}{||Xx||} \le \lambda_0$$

Since $||Yy|| = ||AXx|| \le ||A|| ||Xx||, \lambda_0 \le ||A||.$ So $||A|| = \lambda_0.$

The proof of the converse is obvious.

LEMMA 3.2. Let x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n be vectors in \mathcal{H} and let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Then the following are equivalent:

 \Box

(1) There exists an operator A in $\mathcal{B}(\mathcal{H})$ such that $AXx_i = Yy_i$ for i = 1, 2, ..., n.

(2)
$$\sup\{\|\sum_{i=1}^n \alpha_i Y y_i\|/\|\sum_{i=1}^n \alpha_i X x_i\| : \alpha_i \in \mathbb{C}\} = \lambda < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that $||A|| = \lambda$.

Proof. Assume that

$$\sup\{\|\sum_{i=1}^n \alpha_i Y y_i\|/\|\sum_{i=1}^n \alpha_i X x_i\|: \alpha_i \in \mathbb{C}\} = \lambda < \infty.$$

Then

$$(**) \qquad \qquad \|\sum_{i=1}^{n} \alpha_i Y y_i\| \leq \lambda \|\sum_{i=1}^{n} \alpha_i X x_i\| \text{ for } \alpha_i \in \mathbb{C}.$$

Let $\mathcal{N}_X = \{\sum_{i=1}^n \alpha_i X x_i : \alpha_i \in \mathbb{C} \}$. Then \mathcal{N}_X is a linear manifold. Define $A: \mathcal{N}_X \to \mathcal{H}$ by

$$A(\sum_{i=1}^{n} \alpha_i X x_i) = \sum_{i=1}^{n} \alpha_i Y y_i.$$

Then A is well-defined by (**). Define Ag = 0 for all g in $\overline{\mathcal{N}_X}^{\perp}$. Then A is an operator in $\mathcal{B}(\mathcal{H})$ and $AXx_i = Yy_i (i = 1, 2, ..., n)$. If $\sum_{i=1}^n \alpha_i Xx_i \neq 0$, then

$$||A|| = \sup\{\|\sum_{i=1}^{n} \alpha_i Y x_i\| / \|\sum_{i=1}^{n} \alpha_i X x_i\| : \alpha_i \in \mathbb{C}\} \le \lambda.$$

Since

$$\|\sum_{i=1}^{n} \alpha_i Y y_i\| = \|A(\sum_{i=1}^{n} \alpha_i X x_i)\| \le \|A\| \|\sum_{i=1}^{n} \alpha_i X x_i\|, \ \lambda \le \|A\|.$$

So $||A|| = \lambda$. The proof of the converse is obvious.

We can extend this fact to the countable case.

LEMMA 3.3. Let x_1, x_2, \ldots and y_1, y_2, \ldots be vectors in \mathcal{H} and X and Y be operators in $\mathcal{B}(\mathcal{H})$. Then the following are equivalent:

(1) There exists an operator A in $\mathcal{B}(\mathcal{H})$ such that $AXx_n = Yy_n$ for $n \in \mathbb{N}$.

(2)
$$\sup\{\|\sum_{i=1}^n \alpha_i Yy_i\|/\|\sum_{i=1}^n \alpha_i Xx_i\| : \alpha_i \in \mathbb{C} \text{ and } n \in \mathbb{N}\} = \lambda < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that $||A|| = \lambda$.

From Lemmas 3.1, 3.2 and 3.3, we can obtain generalized results on the interpolation problems in $Alg\mathcal{L}$.

THEOREM 3.4. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let x and y be vectors in \mathcal{H} . Let P_x be the projection onto sp(x). If $P_xE = EP_x$ for each $E \in \mathcal{L}$, then the following are equivalent:

- (1) There exists an operator A in Alg \mathcal{L} such that Ax = y.
- (2) $\sup\{\|E^{\perp}y\|/\|E^{\perp}x\|: E \in \mathcal{L}\} = K_0 < \infty$. Moreover, if condition (2) holds, we may choose an operator A such that $\|A\| = K_0$.

Proof. Assume that $\sup \{ \|E^{\perp}y\|/\|E^{\perp}x\| : E \in \mathcal{L} \} = K_0 < \infty$. By Lemma 3.1, for each E in \mathcal{L} , there exists an operator A_E in $\mathcal{B}(\mathcal{H})$ such that $A_E(E^{\perp}x) = E^{\perp}y$ and $\|A_E\| \leq K_0$. In particular, if E = 0, then we have an operator A_0 in $\mathcal{B}(\mathcal{H})$ such that $A_0x = y$ and $\|A_0\| \leq K_0$. Then for each $E \in \mathcal{L}$, $A_EE^{\perp}x = E^{\perp}y = E^{\perp}A_0x$. Hence $A_EE^{\perp} = E^{\perp}A_0$ on $\operatorname{sp}(x)$. And for each E in \mathcal{L} , $A_EE^{\perp}h = 0$ for h in $\operatorname{sp}(x)^{\perp}$. For, let E be in \mathcal{L} and h be in $\operatorname{sp}(x)^{\perp}$. Then

$$\langle E^{\perp}h, E^{\perp}x \rangle = \langle h, E^{\perp}x \rangle = \langle h, E^{\perp}P_x x \rangle$$
$$= \langle h, P_x E^{\perp}x \rangle = \langle P_x h, E^{\perp}x \rangle = 0.$$

Hence $E^{\perp}h \in \operatorname{sp}(E^{\perp}x)^{\perp}$ for $h \in \operatorname{sp}(x)^{\perp}$. Since A_E g = 0 for all g in $\operatorname{sp}(E^{\perp}x)^{\perp}$, $A_EE^{\perp}h = 0$.

By the definition of the operator A_0 , $E^{\perp}A_0h = 0$ for $h \in \operatorname{sp}(x)^{\perp}$. Hence $A_E E^{\perp}h = 0 = E^{\perp}A_0h$ for $h \in \operatorname{sp}(x)^{\perp}$. So $A_E E^{\perp} = E^{\perp}A_0$. Let E be in \mathcal{L} . Then

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0.$$

So A_0 is an operator in Alg \mathcal{L} . Since $A_0x = y$ and $E^{\perp}A_0E^{\perp} = E^{\perp}A_0$,

$$||E^{\perp}y|| = ||E^{\perp}A_0x|| = ||E^{\perp}A_0E^{\perp}x|| \le ||A_0|| ||E^{\perp}x||.$$

So $K_0 \le ||A_0||$. Therefore $||A_0|| = K_0$.

The proof of the converse is obvious.

THEOREM 3.5. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n be vectors in \mathcal{H} . Let $\mathcal{M} = \{\sum_{i=1}^n \alpha_i x_i : \alpha_i \in \mathbb{C}\}$ and $P_{\mathcal{M}}$ be the projection onto \mathcal{M} . If $P_{\mathcal{M}}E = EP_{\mathcal{M}}$ for each $E \in \mathcal{L}$, then the following are equivalent:

- (1) There exists an operator A in Alg \mathcal{L} such that $Ax_i = y_i$ for $i = 1, 2, \ldots, n$.
 - (2) $\sup\{\|\sum_{i=1}^n \alpha_i E^{\perp} y_i\|/\|\sum_{i=1}^n \alpha_i E^{\perp} x_i\|: E \in \mathcal{L}, \ \alpha_i \in \mathbb{C}\} = K_0 < \infty.$

Moreover, if condition (2) holds, we may choose an operator A such that $||A|| = K_0$.

Proof. Suppose that

$$\sup\{\|\sum_{i=1}^{n} \alpha_{i} E^{\perp} y_{i}\|/\|\sum_{i=1}^{n} \alpha_{i} E^{\perp} x_{i}\|: E \in \mathcal{L}, \ \alpha_{i} \in \mathbb{C}\} = K_{0} < \infty.$$

Let E be in \mathcal{L} . Then by Lemma 3.2, there exists an operator A_E in $\mathcal{B}(\mathcal{H})$ such that $A_E E^{\perp} x_i = E^{\perp} y_i$ for $i = 1, 2, \ldots, n$. If E = 0, then $A_0 x_i = y_i$ for $i = 1, 2, \ldots, n$. So $A_E E^{\perp} x_i = E^{\perp} y_i = E^{\perp} A_0 x_i$ for each $i = 1, 2, \ldots, n$. Hence

$$A_E E^{\perp} \left(\sum_{i=1}^n \alpha_i x_i \right) = \sum_{i=1}^n \alpha_i A_E E^{\perp} x_i = \sum_{i=1}^n \alpha_i E^{\perp} y_i$$
$$= \sum_{i=1}^n \alpha_i E^{\perp} A_0 x_i$$
$$= E^{\perp} A_0 \left(\sum_{i=1}^n \alpha_i x_i \right).$$

Therefore $A_E E^{\perp} = E^{\perp} A_0$ on \mathcal{M} . Let $h \in \mathcal{M}^{\perp}$. Then

$$\left\langle E^{\perp}h, \sum_{i=1}^{n} E^{\perp}x_{i} \right\rangle = \sum_{i=1}^{n} \left\langle h, E^{\perp}x_{i} \right\rangle$$

$$= \sum_{i=1}^{n} \left\langle h, E^{\perp}P_{\mathcal{M}}x_{i} \right\rangle$$

$$= \sum_{i=1}^{n} \left\langle h, P_{\mathcal{M}}E^{\perp}x_{i} \right\rangle = \sum_{i=1}^{n} \left\langle P_{\mathcal{M}}h, E^{\perp}x_{i} \right\rangle = 0.$$

So $E^{\perp}h \in \mathcal{N}^{\perp}$, where $\mathcal{N} = sp\{E^{\perp}x_1, E^{\perp}x_2, \dots, E^{\perp}x_n\}$. Since $A_Eg = 0$ for all g in \mathcal{N}^{\perp} , $A_EE^{\perp}h = 0$.

Hence $E^{\perp}A_0 = A_E E^{\perp}$ for all E in \mathcal{L} . For each $E \in \mathcal{L}$,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0.$$

Hence $A_0 \in \text{Alg}\mathcal{L}$. Moreover, since $A_0x_i = y_i$ for i = 1, 2, ..., n and $E^{\perp}A_0E^{\perp} = E^{\perp}A_0$,

$$\begin{split} \| \sum_{i=1}^{n} \alpha_{i} E^{\perp} y_{i} \| &= \| \sum_{i=1}^{n} \alpha_{i} E^{\perp} A_{0} x_{i} \| \\ &= \| \sum_{i=1}^{n} \alpha_{i} E^{\perp} A_{0} E^{\perp} x_{i} \| \\ &= \| E^{\perp} A_{0} (\sum_{i=1}^{n} \alpha_{i} E^{\perp} x_{i}) \| \leq \| A_{0} \| \| \sum_{i=1}^{n} \alpha_{i} E^{\perp} x_{i} \|. \end{split}$$

So $K_0 \leq ||A_0||$. Hence $||A_0|| = K_0$.

References

- M. Anoussis, E. Katsoulis, R. L. Moore, and T. T. Trent, Interpolation problems for ideals in nest algebras, Math. Proc. Camb. Phil. Soc. 111 (1992), no. 1, 151– 160.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [3] A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), no. 1, 121-126.
- [4] _____, Hilbert-Schmidt interpolation in CSL-algebras, Illinois J. Math. 33 (1989), no. 4, 657-672.
- Y. S. Jo and J. H. Kang, Interpolation problems in AlgL, J. Appl. Math. comput. 18 (2005), 513-524.
- [6] Y. S. Jo, J. H. Kang, and K. S. Kim, On operator interpolation problems, J. Korean Math. Soc. 41 (2004), no. 3, 423-433.
- [7] R. Kadison, Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273–276.
- [8] E. Katsoulis, R. L. Moore, and T. T. Trent, Interpolation in nest algebras and applications to operator Corona theorems, J. Operator Theory 29 (1993), no. 1, 115-123.
- [9] E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc. (3) 19 (1969), 45-68.
- [10] R. Moore and T. T. Trent, Linear equations in subspaces of operators, Proc. Amer. Math. Soc. 128 (2000), no. 3, 781-788.

- [11] _____, Interpolation in inflated Hilbert spaces, Proc. Amer. Math. Soc. 127 (1999), no. 2, 499–507.
- [12] N. Munch, Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), no. 2, 407–418.

Young Soo Jo Department of Mathematics Keimyung University Daegu 704-701, Korea E-mail: ysjo@kmu.ac.kr

Joo Ho Kang Department of Mathematics Daegu University Daegu 712-714, Korea E-mail: jhkang@daegu.ac.kr

Dong Wan Park
Department of Mathematics
Keimyung University
Daegu 704-701, Korea
E-mail: dpark@kmu.ac.kr