• Title/Summary/Keyword: High Voltage Thyristor

Search Result 94, Processing Time 0.021 seconds

Characteristics of Latch-up Current of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 Latch-up 전류 특성)

  • 이응래;오정근;이형규;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.799-805
    • /
    • 2004
  • Two dimensional MEDICI simulator is used to study the characteristics of latch-up current of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics, latch-up current density, ON-voltage drop and electrical property with the variations of p-base impurity concentrations. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have the better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer p-base structure under the floating $N^+$ emitter indicates to have the better characteristics of latch-up current and breakover voltage.

Computer Simulation for High Voltage Thyristor Fabrication (고전압 사이리스터 제작을 위한 Computer Simulation)

  • Kim, Sang-Cheol;Kim, Eun-dong;Kim, Nam-kyun;Bahng, Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.243-246
    • /
    • 2001
  • Thyristor devices have 3-dimensional complicated structure and were sensitive to temperature characteristics. Therefore, it was difficult to optimize thyristor devices design. We have to consider many design parameter to characterize, and trade-off relations. The important parameters to design thyristor devices are cathode structure, effective line width, cathode-emitter shunt structure, gate structure, doping profile and carrier lifetime. So, we must consider that these design parameters were not acted separately. However, there are many difficulties to determine optimized design parameters by experiment. So, We used specific design software to design thyristor devices, and estimated the thyristor devices characteristics.

  • PDF

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

Study on Design and Electric Characteristics of MOS Controlled Thyristor for High Breakdown Voltage (고내압용 MOS 구동 사이리스터 소자의 설계 및 전기적 특성에 관한 연구)

  • Hong, Young-Sung;Chung, Hun-Suk;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.794-798
    • /
    • 2011
  • This paper was carried out design of 1,700 V Base Resistance Thyristor for fabrication. We decided conventional BRT (base resistance thyristor) device and Trench Gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 2,000 V breakdown voltage and 3.0 V Vce,sat. At the same time, we carried out field ring simulation for obtaining high voltage.

Capacitance Properties of Degraded Thyristor with Temperature and Voltage (가속열화된 사이리스터의 커패시턴스 특성)

  • Seo, Kil-Soo;Lee, Yang-Jae;Kim, Hyeng-Woo;Kang, In-Ho;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.131-132
    • /
    • 2005
  • In this paper, the capacitance properties of degraded thyristor with temperature and voltage were presented. As degraded thyristor, 8 thyristors with each other different reverse blocking voltage used. Its impedance and resistance properties were measured from frequency 100Hz to 10MHz applied with bias voltage from 0V to 40V. As a result, at low frequency region, that is, at the frequency 100 - 10kHz, the abrupt increasement of its capacitance was confirmed. And also, at high frequency region, the capacitance peak move toward low frequency in the region of frequency 4 - 6MHz as degradation of thyristor.

  • PDF

A Gate Driver for High Voltage Thyristor Diode Switch

  • Kim, W.H.;Kang, I.;Kim, J.S.;Ryoo, H.J.;Rim, G.H.;Cho, M.H.;Nam, J.H.;Kim, J.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.855-858
    • /
    • 1998
  • Many semiconductive switches are operated in series for high voltage operation. The same number of gate drivers are needed to control all the switches, hence, the drivers cause high cost and system complexity. In this study, a simple and low cost gate driver for high voltage thyristor diode switches is investigated. This gate driver can operate several high voltage thyristor diode switches at the same time.

  • PDF

A Gate Driver for the High Voltage Thyristor-Diode Switch (고전압 싸이리스터 다이오드 스위치 구동회로)

  • Kim, W.H.;Kang, I.;Kim, J.S.;Ryoo, H.J.;Rim, G.H.;Cho, M.H.;Ham, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2133-2135
    • /
    • 1998
  • Many semiconductive switches are operated in series for high voltage operation. The same number of gate drivers are needed to control all the switches, hence, the drivers cause high cost and system complexity. In this study, a simple and low cost gate driver for high voltage thyristor-diode switches is investigated. This gate driver can operate several high voltage thyristor-diode switches at the same time.

  • PDF

Electrical Characteristics of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 전기적 특성)

  • Kim, Nam-Soo;Lee, Eung-Rae;Cui, Zhi-Yuan;Kim, Yeong-Seuk;Kim, Kyoung-Won;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.401-406
    • /
    • 2005
  • Two dimensional MEDICI simulator is used to study the electrical characteristics of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics with the variations of p-base impurity concentrations and current flow. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have tile better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer u-base structure under the floating N+ emitter indicates to have the better characteristics of latch-up current and breakover voltage in spite of the same turn-off characteristics.

A Characteristics on Impedance of Degraded Thyristor with Heat and Voltage Stress (열화된 사이리스터 소자의 임피던스 특성)

  • Seo, Kil-Soo;Kim, Hyung-Woo;Kim, Ki-Hyun;Kim, Nam-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1351-1352
    • /
    • 2006
  • In this paper, the impedance properties of degraded thyristor with heat and voltage were presented. As degraded thyristor, 8 thyristors with each other different reverse blocking voltage used. Its impedance and resistance properties were measured from frequency 100Hz to 10MHz applied with bias voltage from 0V to 40V. As a result, at low frequency region, that is, at the frequency 100-10kHz, the abrupt increasement of its capacitance was confirmed. And also, at high frequency region, the capacitance peak move toward low frequency in the region of frequency 4 - 6MHz as degradation of thyristor.

  • PDF

A New Dual Gate Transistor Employing Thyristor Action (사이리스터 동작을 이용한 새로운 이중 게이트 트랜지스터)

  • 하민우;전병철;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.358-363
    • /
    • 2004
  • A new 600 V dual gate transistor employing thyristor action, which incorporates floating PN junction and trench gate IGBT, is proposed to improve the forward current-voltage characteristics and the short circuit ruggedness. Our two-dimensional numerical simulation shows that the proposed device exhibits low forward voltage drop and eliminates the snapback phenomena compared with conventional trench gate IGBT and EST The proposed device achieves high current saturation characteristics by separating floating N+ emitter and cathode. The proposed device achieves low saturation current value compared with conventional devices, and the short-circuit ruggedness is improved. The proposed device may be suitable for the use of high voltage switching applications.