• 제목/요약/키워드: High Pressure Pumping

검색결과 113건 처리시간 0.027초

Transition Analysis of Friction Factor According to Pumping Pressure in Pumping Test Using High Strength Concrete for High-rise Buildings

  • Kwon, Hae-Won;Kim, Young-Su
    • 한국건축시공학회지
    • /
    • 제13권4호
    • /
    • pp.400-406
    • /
    • 2013
  • In high-rise buildings, high-strength concrete is widely used to reduce the section of structure members under axial load. Also, the price increase of materials is very important item in the high-rise buildings. Especially, concrete used high-pressure pump due to consecutive structural assembly. Unlike slump type of ordinary concrete, high strength concrete has different properties of concrete pumping due to viscosity. However, there have been no Korean studies on the pumping properties of high strength concrete. Therefore, this paper measures the friction factor of high strength concrete with changes in the pressure of concrete pumping. We analyzed the trends of the friction factor based on changes in the pressure of concrete pumping, and then calculated the quantity of concrete deposited for each specified concrete strength and location of placement. After comparing these results with the quantity of concrete deposited measured in field, we evaluated the pumping properties of high strength concrete. Through the tests and the review, we attempt to suggest some basic information for the In-Situ application of high strength concrete.

고강도콘크리트의 고속펌핑을 위한 압송성평가 및 예측모델에 관한 연구 (Development of Evaluation and Prediction Model for Concrete High Speed Pumping)

  • 김형래;조호규;정웅택
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.201-203
    • /
    • 2012
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for the evaluation of concrete pumping performance for high speed construction of super-tall building. So, this study focuses on quantitative evaluation of concrete fluid characteristics and surface friction resistance under the change of concrete mix proportion and pumping condition. In this study, we measured the rheology of concrete and pipe pressure and surface friction characteristics when pumping. And, relations between the rheology characteristics of concrete and pumping performance was investigated by experiment. As the result of the experiment, high regression between the surface friction and pressure gradient was confirmed. And, prediction model to evaluate the friction resistance coefficient and pipe pressure reduction coefficient was suggested.

  • PDF

경량골재를 사용한 경량콘크리트의 펌프압송 성능향상에 관한 실험적 연구 (The Experimental Study on improvement the pump sending of the light weight concrete using the light weight aggregate)

  • 박대오;서치호;지석원;이진우;신상태;지석원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.23-26
    • /
    • 2006
  • The study about the concrete to use recently a light weight aggregate, processed actively. And concrete pumping with a high pressure pump has been popularized, the mechanical development, such as high pressure pumps or pipes, is progressing rapidly. Concrete placing by pumping has the advantage of the reduction of the construction period with workability, easiness of work and the increase of placing, but the quality variation of concrete is caused by pumping is seldom considered, including the increase of the pipe length by high-rising and large-sizing, there by the loss of the unit quantity of water, with pumpability or workability deteriorated. In this research, we will compare and analyze before pumping and after pumping samples of ready-mixed light weight concrete. The result of study as follow. The case of a light weight concrete which the low slump is more decrement compared with high slump light weight concrete in after pumping samples. After pumping the water by pressure of a pump was absorbed to the aggregate inside, and it showed an increase of compression strength about $5{\sim}20%$.

  • PDF

Evaluation of Pumping Characteristics of High Strength Concrete using Continuous Pumping System

  • Kwon, Dae-Hun;Lee, Han-Seung;Jeon, Jun-Young;Jeong, Woong-Taek;Jo, Ho-Kyoo;Kim, Hyung-Rae
    • 한국건축시공학회지
    • /
    • 제11권4호
    • /
    • pp.387-395
    • /
    • 2011
  • In the construction of tall-building, concrete pumping influences the success of the project. In order to establish pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So in this study, the characteristics including the inner pipe pressure, rheological properties of concrete and mortar through the continuous pumping test were evaluated. Then we analyzed the relations between rheological properties and pumpability. In the result of test, there are high correlations between the rheological characteristics which represented by yield stress and plastic viscosity and pressure loss with pipe length. Also, we estimated pressure loss according to conditions of concrete mix and pumping through the evaluation of inner pipe friction.

초고층 구조물 시공을 위한 고성능 콘크리트의 펌프압송 기술에 관한 실험적 연구 (An Experimental Study on the Concrete Pumping Technology of High Performance Concrete for the High-Rise Building Construction)

  • 김규동;한천구
    • 한국건축시공학회지
    • /
    • 제15권4호
    • /
    • pp.375-381
    • /
    • 2015
  • 본 연구에서는 초고층 구조물 시공시, 적용되는 규격별 고성능 콘크리트의 특성을 평가하고 60MPa의 고성능 콘크리트를 대상으로 높이가 500m부터 575m인 지점까지 압송계측 결과를 근거로 하여 압송성능과 고성능 콘크리트의 유동특성의 상관관계를 분석하였다. 분석 결과, 각 규격별 굳지 않은 콘크리트의 물성과 재령 12시간의 초기강도 및 기준 재령에서의 압축강도 및 탄성계수는 모두 품질기준을 만족함이 확인되었다. 또한, 높이별 최대 압송압력은 약 5% 정도씩 증가하였으며, 시간당 토출량도 최소 $25m^3$를 만족하는 것으로 나타났다. 펌프압송 후 콘크리트의 온도증가와 압송전의 콘크리트 소성점도의 크기에 따라 슬럼프 플로우의 손실이 증가됨을 확인할 수 있었다.

초고층 압송계측을 통한 고성능 콘크리트의 유동특성과 압송성능과의 상관관계 (The Correlation between Rheological Properties and Pumpability of High Performance Concrete from High-Rise Pumping Monitoring)

  • 김규동;한천구
    • 한국건축시공학회지
    • /
    • 제15권3호
    • /
    • pp.291-297
    • /
    • 2015
  • 본 연구에서는 초고층 구조물 시공에 사용되는 80MPa의 고성능 콘크리트를 대상으로 높이가 200m부터 350m인 지점까지 압송계측 결과를 근거로 하여 압송성능과 고성능 콘크리트의 유동특성과의 상관관계를 분석하였다. 굳지 않은 콘크리트의 물성과 초기강도 및 기준 재령에서의 압축강도 및 탄성계수는 모두 품질기준을 만족함이 확인되었다. 또한, 높이별 최대 압송압력은 약 10~15%씩 증가하였으며, 시간당 토출량은 최소 $25m^3$를 만족하는 것으로 나타났다. 또한, 압송압력과 마찰계수는 슬럼프 플로우의 크기에 반비례하는 것으로 나타났으며, 압송압력과 마찰계수는 T-500이 높을수록 증가하는 경향을 보였다.

피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2) (A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2))

  • 박성환;이진걸
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF

콘크리트의 레올로지 특성 및 펌핑조건에 따른 펌프압송특성에 관한 연구 (A Study on the Pumping Characteristics according to Pumping Method and Rheology Characteristics of Concrete)

  • 권대훈;정웅택;김형래;조호규;전준영;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.99-101
    • /
    • 2011
  • In order to have pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So, this study evaluate the characteristics among the inner pipe pressure, fresh concrete properties and separated mortar through the continuous pumping test. Then it consider of relations between rheological properties and pumpability. In the result of test, it found that there are high interrelationship between the rheological characteristics which represented plastic viscosity and pressure lose by pipe length.

  • PDF

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.

고압송용 고유동콘크리트 개발을 위한 가압에 따른 굵은골재의 흡수 특성 (Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping)

  • 최연왕;최병걸;오성록
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.122-129
    • /
    • 2016
  • 본 연구에서는 고압송용 고유동콘크리트 개발을 위한 기초적인 연구의 일환으로 펌프압송시 압송관내 콘크리트가 받는 압력을 재현할 수 있는 가압장치를 개발하였다. 이를 통하여 펌프압송할 경우 발생되는 품질변화의 원인 중 압력에 의한 단위수량 감소에 중점을 두어 가압에 따른 콘크리트용 굵은골재의 흡수 특성 및 고유동콘크리트 내부 굵은골재의 흡수 특성을 평가하였으며, 고유동콘크리트의 가압 전 후 압축강도를 평가하였다. 실험결과, 250 bar의 높은 압력이 작용할 경우 부순굵은골재 및 강자갈의 흡수율은 표건 흡수율 이상으로 증가되지 않는 것으로 나타났으며, 경량굵은골재의 흡수율은 표건 흡수율 이상으로 증가되는 것으로 나타났다.