• Title/Summary/Keyword: Hierarchical Forecasting

Search Result 26, Processing Time 0.023 seconds

The Impact of Demand Features on the Performance of Hierarchical Forecasting : Case Study for Spare parts in the Navy (수요 특성이 계층적 수요예측법의 퍼포먼스에 미치는 영향 : 해군 수리부속 사례 연구)

  • Moon, Seong-Min
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.101-114
    • /
    • 2012
  • The demand for naval spare parts is intermittent and erratic. This feature, referred to as non-normal demand, makes forecasting difficult. Hierarchical forecasting using an aggregated time series can be more reliable to predict non-normal demand than direct forecasting. In practice the performance of hierarchical forecasting is not always superior to direct forecasting. The relative performance of the alternative forecasting methods depends on the demand features. This paper analyses the influence of the demand features on the performance of the alternative forecasting methods that use hierarchical and direct forecasting. Among various demand features variability, kurtosis, skewness and equipment groups are shown to significantly influence on the performance of the alternative forecasting methods.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

Design of a Demand Forecasting System for Planning Production of Consumer Products (다품종(多品種) 소비자(消費者) 제품(製品)의 생산관리(生産管理)를 위(爲)한 수요예측모형(需要豫測模型))

  • Park, Jin-U
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 1986
  • Mathematical forecasting models and a practical computer based forecasting system are developed for planning production in a manufacturing and distribution network. The forecasting system works at the highest level of a hierarchical computer-based decision support system consisting of the forecasting system, an aggregate planning system and a shop floor scheduling system. The dynamics of business operations for an actual company have been considered to make this study a unique comprehensive analysis of a real world forecasting problem.

  • PDF

Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data (패널자료를 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Park Sung-Ho;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.157-167
    • /
    • 2006
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

Load Forecasting using Hierarchical Clustering Method for Building (계층적 군집분석방법을 활용한 건물 부하의 전력수요예측)

  • Hwang, Hye-Mi;Lee, Sung-Hee;Park, Jong-Bae;Park, Yong-Gi;Son, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • In recent years, energy supply cases to take advantage of EMS(Energy Management System) are increasing according to high interest of energy efficiency. The important factor for essential and economical EMS operation is the supply and demand plan the hourly power demand of building load using the hierarchical clustering method of variety statistical techniques, and use the real historical data of target load. Also the estimated results of study are obtained the reliability through separate tests of validity.

Development of a Cross-impact Hierarchical Model for Deciding Technology Priority (기술우선도 결정을 위한 상호영향 계층분석모형의 개발)

  • 권철신;조근태
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The objective of this paper is to develop a new priority setting algorithm that considers the cross-impact of the future technology alternatives and that satisfies the final goal of the technology management through multi-hierarchy evaluation criteria. By combining the Analytic Hierarchy Process (AHP) model, which is a well-known priority setting model, and Cross Impact Analysis (CIA) model, which is a technological forecasting method that considers cross-impact among R&D Items, we developed an Integrated Cross-Impact Hierarchical (CIH) model, which sets the priority by considering technological forecasting and technology dependency simultaneously. A step-by-step numerical example of the model developed here is presented as backup of its practicality.

A Study on Long-Term Spatial Load Forecasting Using Trending Method (추세분석법에 의한 영역의 장기 수요예측)

  • Hwang Kab-Ju;Choi Soo-Keon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.604-609
    • /
    • 2004
  • This paper suggests a long-term distribution area load forecasting algorithm which offers basic data for distribution planning of power system. To build forecasting model, 4-level hierarchical spatial structure is introduced: System, Region, Area, and Substation. And, each spatial load can be decided proportional to its portion in the higher level. This paper introduces the horizon year loads to improve the forecasting results. And, this paper also introduces an effective load transfer algorithm to improve forecasting stability in case of new or stopped substations. The proposed model is applied to the load forecasting of KEPCO system composed of 16 regions, 85 areas and 761 substations, and the results are compared with those of econometrics model to verify its validity.

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Estimation of Dynamic Effects of Price Increase on Sales Using Bayesian Hierarchical Model (베이지안 다계층모형을 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Jeon, Deok-Bin;Park, Seong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.798-805
    • /
    • 2005
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expect it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. Above factors make the sales dynamic and unstable. We develop a time series model to evaluate the sales patterns with stockpiling and short term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

  • PDF

Hierarchical time series forecasting with an application to traffic accident counts (계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측)

  • Lee, Jooeun;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.181-193
    • /
    • 2017
  • The paper introduces bottom-up and optimal combination methods that can analyze and forecast hierarchical time series. These methods allow forecasts at lower levels to be summed consistently to upper levels without any ad-hoc adjustment. They can also potentially improve forecast performance in comparison to independent forecasts. We forecast regional traffic accident counts as time series data in order to identify efficiency gains from hierarchical forecasting. We observe that bottom-up or optimal combination methods are superior to independent methods in terms of forecast accuracy.