• 제목/요약/키워드: Helmholtz

검색결과 458건 처리시간 0.02초

헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석 (Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation)

  • 최성훈
    • 한국음향학회지
    • /
    • 제27권8호
    • /
    • pp.411-417
    • /
    • 2008
  • 본 논문에서는 헬름홀쯔 적분 방정식에서 유도된 식을 이용하여 구조물의 표면 압력을 구조진동 성분에 대한 단순한 적분형태로 표현하여 음향방사 및 구조/음향 연성 문제를 수치적으로 푸는 방법에 대하여 다룬다. 이 식은 임의의 형상에 대하여 유도된 식으로 Rayleigh 식과 유사한 형태를 갖는다. 이 식을 이용하면 표면 압력을 구조물의 속도에 대한 단순 적분 형태로 나타낼 수 있기 때문에 경계요소법과 같이 연립방정식에 대한 행렬식을 풀 필요가 없다. 또한 헬름홀쯔 적분 방정식에 기반을 둔 다른 방법 들이 가지는 해의 유일성 문제도 갖지 않는 장점이 있다. 본 논문에서는 구형 셀에 대하여 수치해와 정해를 비교하여 제안한 방법의 타당성을 검증하였다.

압력식 스월 노즐의 액적 크기분포 예측에 관한 연구 (A Study on the Prediction of the Drop Size Distribution of Pressure-Swirl Atomizer)

  • 조대진;윤석주;김동우
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.44-54
    • /
    • 1996
  • A theoretical and experimental study was carried out on the prediction of drop size distribution of the pressure swirl atomizer. Drop size distribution was obtained by using maximum entropy formal ism. Several constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of the estimating source terms. In this study $D_{10}$ was only introduced into the formulation as a constraint. A drop size obtained by using linear Kelvin-Helmholtz instability theory was considered as an unknown characteristic length scale. As a result, the calculated drop size was agreed well with measured mean diameter, particularly with $D_{32}$. The predicted drop size distribution was agreed welt with experimental data measured wi th Malvern 2600.

  • PDF

일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발 (Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions)

  • 이강덕;이덕주
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

Scaling methods for wind tunnel modelling of building internal pressures induced through openings

  • Sharma, Rajnish N.;Mason, Simon;Driver, Philip
    • Wind and Structures
    • /
    • 제13권4호
    • /
    • pp.363-374
    • /
    • 2010
  • Appropriate scaling methods for wind tunnel modelling of building internal pressures induced through a dominant opening were investigated. In particular, model cavity volume distortion and geometric scaling of the opening details were studied. It was found that while model volume distortion may be used to scale down buildings for wind tunnel studies on internal pressure, the implementation of the added volume must be done with care so as not to create two cavity resonance systems. Incorrect scaling of opening details was also found to generate incorrect internal pressure characteristics. Furthermore, the effective air slug or jet was found to be longer when the opening was near a floor or sidewall as evidenced by somewhat lower Helmholtz frequencies. It is also shown that tangential flow excitation of Helmholtz resonance for off-centre openings in normal flow is also possible.

원추형 액막분열 해석에 의한 액적 크기 예측 (Prediction of drop size by analysis of conical liquid sheet breakup)

  • 윤석주;조대진
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.8-17
    • /
    • 1997
  • A study has been carried out on the instability of a conical liquid sheet by using the linear instability theory. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed the the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. The predicted drop size agreed well with the measured Sauter mean diameter, $D_{32}$.

  • PDF

흡음재가 조합된 헬름홀츠 공명기의 흡음성능 (Sound Absorption Performance of a Helmholtz Resonator combined with Porous Materials)

  • 이영철;이선기;송화영;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-285
    • /
    • 2008
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

  • PDF

고균일자계 Double Helmholtz형 및 삼개분리 원통형키전동자석에 관한 연구 (A Study on Highly Homogeneous Double Helmholtz Superconducting Magnet and Newly Configurated Superconducting Magnet)

  • 이승원;권용안
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.521-527
    • /
    • 1988
  • At present superconducting magnets have been feasible for many applications which require high field or highly homogeneous field that it is too difficult to be produced by conventional electromagnets. This paper is a stuny on Donble Helmholtz superconducting magnet and newly configurated superconducting magnet that realize highly homogeneous field with the minimum magnet volume. Nonlinear programming method is effectively used for the minimum volume of superconducting magnet that realizes the desired field intensity and high homogeneity. The results on Double Helmholtz and newly configurated superducting magnets that are presented in this paper are largely improved.

  • PDF

고체추진제의 연소불안정특성 측정방법에 대한 연구 (A Study on Determining Method of Combustion Instability Characteristics of Solid Propellants)

  • 윤재건;유지창;이정권
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1081-1086
    • /
    • 1994
  • The phenomena called "combustion instabilities" in a solid-propellant rocket motor may be viewed as sustaining or amplifying pressure waves. Energy is supplied by combustion processes near the surface of the burning propellant. T-burner method is used to determine the response function of the propellant to the pressure wave. But initial tests were failed because of the Helmholtz resonation inside the T-burner. Acoustic analysis of the original T-burner is carried out and suppression techniques for the Helmholtz oscillation are introduced.ntroduced.

FINITE ELEMENT DUAL SINGULAR FUNCTION METHODS FOR HELMHOLTZ AND HEAT EQUATIONS

  • JANG, DEOK-KYU;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권2호
    • /
    • pp.101-113
    • /
    • 2018
  • The dual singular function method(DSFM) is a numerical algorithm to get optimal solution including corner singularities for Poisson and Helmholtz equations. In this paper, we apply DSFM to solve heat equation which is a time dependent problem. Since the DSFM for heat equation is based on DSFM for Helmholtz equation, it also need to use Sherman-Morrison formula. This formula requires linear solver n + 1 times for elliptic problems on a domain including n reentrant corners. However, the DSFM for heat equation needs to pay only linear solver once per each time iteration to standard numerical method and perform optimal numerical accuracy for corner singularity problems. Because the Sherman-Morrison formula is rather complicated to apply computation, we introduce a simplified formula by reanalyzing the Sherman-Morrison method.

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권4호
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.