• Title/Summary/Keyword: Harmonic noise

Search Result 621, Processing Time 0.024 seconds

Directional Harmonic Wavelet Analysis (방향성 조화 웨이블렛 해석 기법)

  • 한윤식;이종원
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.957-963
    • /
    • 1998
  • A new signal processing technique, the directional harmonic wavelet map(dHWM), is presented to characterize the instantaneous planar motion of a measurement point in a structure from its transient complex-valued vibration signal. It is proven that the directional auto-HWM essentially tracks the shape and directively of the instantaneous planar motion, whereas the phase of the directional cross-HWM indicates its inclination angle. Finally, the technique is suessfully applied to an automobile engine for characterization of its transient motion during crank-on/idling/engine-off.

  • PDF

Rotation-invariant pattern recognition using an optical wavelet circular harmonic matched filter (광웨이브렛 원형고조 정합필터를 이용한 회전불변 패턴인식)

  • 이하운;김철수;김정우;김수중
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.132-144
    • /
    • 1997
  • The rotation-invariant pattern recognition filter using circular harmonic function of the wavelet transforme dsreference image by morlet, mexican-hat, and haar wavelt function is proposed. The rotated reference images, the images sililar to the reference image, and the images which are added by random noise are used for the inpt images, and in case of the input images with random noise, they are applied to the recognition after removing the random noise by the transformed moving average method with proper thresholding value and window size. The proposed optical wavelet circular harmonic matched filter (WCHMF) is a type of the matche dfilter, so that it can be applied to the 4f vander lugt optical correlation system. SNR and discrimination capability of the proposed filter are compared with those of the conventional HF, the POCHF, and the BPOCHF. The proper wavelet function for the reference image used in this paper is achieved by applying morlet, mexican-hat, and harr wavelet function ot the proposed filter, and the proposed filter has good SNR and discrimination capability with rotation-invariance in case of the morlet wavelet function.

  • PDF

An Advanced Phase Angle Measurement Algorithm And Error Analysis (개선된 위상 측정 알고리즘과 오차 해석)

  • 송영석;김재철;최인규;박종식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.25-32
    • /
    • 2004
  • An advanced algorithm for measurement of phase angle between two sinusoidal signals is proposed in this paper. This algorithm uses discrete sample data of two input signals for calculation of phase angle and amplitude. And the key parameters of the measurement algorithm are described by analytical express, so the calculation of phase angle is simplified. In this paper it is proved that harmonic distortion of the input sinusoidal signals does not affect the measurement value of phase angle by using the proposed algorithm when a whole cycle is sampled. And measurement error by the white Gaussian noise is very small compared by other algorithms.

Nonlinear Dynamic Characteristics of Gear Driving Systems with Periodic Meshing Stiffness Variation and Backlash (주기적 물림강성 변화와 백래쉬에 의한 기어구동계의 비선형 동특성)

  • Cho, Yun-Su;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.921-928
    • /
    • 2002
  • Main sources of the nitration of a gear-pair system are backlash and transmission error, the difference between required and actual rotation during gear meshing. This paper presents the nonlinear dynamic characteristics of gear motions due to the existence of backlash and periodic variation of meshing stiffness, which is assumed as a one-term harmonic component. Gear motions are classified as three types with the consideration of backlash. Each response is calculated using the harmonic balance method and confirmed by numerical integration. The responses with the increase of the rotating speed show abrupt changes in its magnitude for the variation of the preload, exciting force, and damping coefficient. The result also shows that there is a chaotic motion with some specific design parameters and operating conditions In gear diving system. Consequently the design of gear driving system with low nitration and noise requires the study on the effects of nonlinear dynamic characteristics due to stiffness variation and backlash.

A Study on the downconverter Using Sub-Harmonic Mixer for Point to Point System Applications (Sub-Harmonic 혼합기를 이용한 점대점 시스템용 하향 변환기에 관한 연구)

  • Min Jun-Ki;Kim Hyun-Jin;Kim Yong-Hwan;Yoo Hyung-Soo;Yun Ho-Seok;Lee Keun-Tae;Hong Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.958-964
    • /
    • 2005
  • In this thesis, the matching network at the local oscillator port of the sub-harmonic mixer is optimized for reducing the conversion loss. A downconverter for point to point system applications is designed and fabricated using the such sub-harmonic mixer. The sub-harmonic mixer achieved the conversion loss of 11.8 dB at the 12 dBm input power of the local oscillator and the isolation of less than -40 dB. The downconverter achieved the IF output power flatness of 2 dB and the total noise figure of 5.9 dB.

Effect of Harmonic Components on the Resonance of Bearing Casing Structures in a Turbine Rotor System (조화성분이 베어링 덮개 구조물의 공진에 미치는 영향)

  • Song, Oh-Seop;Yang, Kyeong-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.847-852
    • /
    • 2007
  • Design aspects of a bearing casing system of a power plant are mainly focused on the strength and weight of itself to have a more stable system. Since the rotor speed often passes through the critical speed region when the operation begins, the relation between the rotating frequency of the rotor and natural frequency of the casing is very important for a prevention of resonance. However, harmonic components above the rotating frequency have often been overlooked the design for the resonance avoidance. In this paper, it is revealed that resonance vibration is generated when the natural frequency of a bearing casing is close to the one of harmonics of basic rotating frequency(1x), and as a consequence, sensing qualify of seismoprobes attached to the bearing casing structure can be seriously damaged. In order to reduce the resonance vibration, some stiffeners are added to the casing structures. Significant reduction in the magnitude of vibration corresponding to 2x harmonic of basic rotating frequency is observed from both FE analysis and experiment.

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

On the Linear Harmonic Analysis of Engine Exhaust and Intake Systems

  • Peat, Keith
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.27-33
    • /
    • 2001
  • Linear harmonic analysis is a convenient and generally accurate method to use for the acoustic analysis of intake and exhaust silencers for IC engines. The major uncertainty in this form of modelling is the characterisation of the source, which is inherently nonlinear and time-variant. Experimental methods are generally used to determine the source characteristics, and in particular the indirect method is most suitable for an IC-engine source. With reference to an idealised linear time-variant source, it is found that the characteristics of a time-variant source as determined by the indirect method have no physical relevance. The direct method of experimental measurement appears to have some advantage over the indirect method, although in practice it is difficult to apply to an IC engine source. Again, an idealised linear time-variant source can be used to indicate that the characteristics of a time-variant source as determined by the direct method also have no physical relevance. Strangely, these meaningless measured source properties can nevertheless be used to accurately predict the radiated noise from an IC engine and silencer system.

  • PDF

Detailed Design of an Active Rotor Blade for Reducing Helicopter Vibratory Loads

  • Natarajan, Balakumaran;Eun, Won-Jong;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.236-241
    • /
    • 2011
  • An active trailing-edge flap blade named as Seoul National University Flap (SNUF) blade is designed for reducing helicopter vibratory loads and the relevant aeroacoustic noise. Unlike the conventional rotor control, which is restricted to 1/rev frequency, an active control device like the present trailing-edge flap is capable of actuating each individual blade at higher harmonic frequencies i.e., higher harmonic control (HHC) of rotor. The proposed blade is a small scale blade and rotates at higher RPM. The flap actuation components are located inside the blade and additional structures are included for reinforcement. Initially, the blade cross-section design is determined. The aerodynamic loads are predicted using a comprehensive rotorcraft analysis code. The structural integrity of the active blade is verified using a stress-strain recovery analysis.

  • PDF

Speaker Separation Based on Directional Filter and Harmonic Filter (Directional Filter와 Harmonic Filter 기반 화자 분리)

  • Baek, Seung-Eun;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.125-136
    • /
    • 2005
  • Automatic speech recognition is much more difficult in real world. Speech recognition according to SIR (Signal to Interface Ratio) is difficult in situations in which noise of surrounding environment and multi-speaker exists. Therefore, study on main speaker's voice extractions a very important field in speech signal processing in binaural sound. In this paper, we used directional filter and harmonic filter among other existing methods to extract the main speaker's information in binaural sound. The main speaker's voice was extracted using directional filter, and other remaining speaker's information was removed using harmonic filter through main speaker's pitch detection. As a result, voice of the main speaker was enhanced.

  • PDF