• Title/Summary/Keyword: H K curvature

Search Result 241, Processing Time 0.021 seconds

A CLASS OF 𝜑-RECURRENT ALMOST COSYMPLECTIC SPACE

  • Balkan, Yavuz Selim;Uddin, Siraj;Alkhaldi, Ali H.
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.293-304
    • /
    • 2018
  • In this paper, we study ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space and prove that it is an ${\eta}$-Einstein manifold with constant coefficients. Next, we show that a three-dimensional locally ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space is the space of constant curvature.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

SPACE CURVES SATISFYING $\Delta$H = AH

  • Kim, Dong-Soo;Chung, Hei-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 1994
  • Let x : $M^{n}$ .rarw. $E^{m}$ be an isometric immersion of a manifold $M^{n}$ into the Euclidean space $E^{m}$ and .DELTA. the Laplacian of $M^{n}$ defined by -div.omicron.grad. The family of such immersions satisfying the condition .DELTA.x = .lambda.x, .lambda..mem.R, is characterized by a well known result ot Takahashi (8]): they are either minimal in $E^{m}$ or minimal in some Euclidean hypersphere. As a generalization of Takahashi's result, many authors ([3,6,7]) studied the hypersurfaces $M^{n}$ in $E^{n+1}$ satisfying .DELTA.x = Ax + b, where A is a square matrix and b is a vector in $E^{n+1}$, and they proved independently that such hypersurfaces are either minimal in $E^{n+1}$ or hyperspheres or spherical cylinders. Since .DELTA.x = -nH, the submanifolds mentioned above satisfy .DELTA.H = .lambda.H or .DELTA.H = AH, where H is the mean curvature vector field of M. And the family of hypersurfaces satisfying .DELTA.H = .lambda.H was explored for some cases in [4]. In this paper, we classify space curves x : R .rarw. $E^{3}$ satisfying .DELTA.x = Ax + b or .DELTA.H = AH, and find conditions for such curves to be equivalent.alent.alent.

  • PDF

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.

Hypersurfaces with quasi-integrable ( f, g, u, ʋ, λ) -structure of an odd-dimensional sphere

  • Ki, U-Hang;Cho, Jong-Ki;Lee, Sung Baik
    • Honam Mathematical Journal
    • /
    • v.4 no.1
    • /
    • pp.75-84
    • /
    • 1982
  • Let M be a complete and orientable hypersurface of an odd-dimensional sphere $S^{2n+1}$ with quasi-integrable $(f,\;g,\;u,\;{\nu},\;{\lambda})$ -structure. The purpose of the present paper is to prove the following two theorems. (I) If the scalar curvature of M is constant and the function $\lambda$ is not locally constant, then M is a great sphere $S^{2n}$(1) or a product of two spheres with the same dimension $S^{n}(1/\sqrt{2}){\times}S^{n}(1/\sqrt{2})$. (II) Suppose that the sectional curvature of the section $\gamma(u,\;{\nu})$ spanned by u and $\nu$ is constant on M and M is compact. If the second fundamental tensor H of M is positive semi-definite and satisfies trace $$^{t}HH{\leq_-}{2n}$$, then M is a great sphere $S^{2n}$ (1) or a product of two spheres $S^{n}{\times}S^{n}$ or $S^{p}{\times}S^{2n-p}$, p being odd.

  • PDF

Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition

  • Kazemia, M.H.;Akhavan-Behabadi, M.A.;Nasr, M.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2014
  • Experiments are performed to investigate the single-phase flow heat transfer augmentation of MWCNT/HT-B Oil in both smooth and micro-fin helical tubes with constant wall temperature. The tests in laminar regime were carried out in helical tubes with three curvature ratios of 2R/d=22.1, 26.3 and 30.4. Flow Reynolds number varied from 170 to 1800 resulting in laminar flow regime. The effect of some parameters such as the nanoparticles concentration, the dimensionless curvature radius (2R/d) and the Reynolds number on heat transfer was investigated for the laminar flow regime. The weight fraction of nanoparticles in base fluid was less than 0.4%. Within the applied range of Reynolds number, results indicated that for smooth helical tube the addition of nanoparticles to the base fluid enhanced heat transfer remarkably. However, compared to the smooth helical tube, the average heat transfer augmentation ratio for finned tube was small and about 17%. Also, by increasing the weight fraction of nanoparticles in micro-fin helical tubes, no substantial changes were observed in the rate of heat transfer enhancement.

Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error (성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정)

  • Seo, Y.H.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.479-484
    • /
    • 2012
  • The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELD IN A MICRO TURBOJET ENGINE AND ITS SCALING CHARACTERISTICS (마이크로 터보제트 엔진 노즐 유동장에 관한 CFD 전산해석 및 스케일링 특성 연구)

  • Lee, H.J.;An, C.H.;Myong, R.S.;Choi, S.M.;Kim, W.C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Thermal flowfield of a micro turbojet engine was computationally investigated for exhaust nozzles with different aspect ratio and curvature. Special attention was paid to maximum and average temperature of the nozzle surface and the exhaust nozzle plume. The IR signatures of the micro turbojet engine nozzle were then calculated through the narrow-band model based on thermal flowfield data obtained through CFD analysis. Finally, in order to check the similarity of thermal flowfields and IR signature of the sub-scale micro turbojet engine model and the full-scale UCAV propulsion system, several non-dimensional parameters associated with temperature and optical property of plume were introduced. It was shown that, in spite of some differences in actual values of non-dimensional parameters, the scaling characteristics on spectral feature of IR signature and effects of aspect ratio and curvature of nozzle configuration remain similar in sub-scale and full-scale cases.

Test Methods of Sealing Material for Plastic Liquid Crystal Display Cells

  • Hsiao, C.C.;Liao, Y.C.;Chang, K.H.;Sha, Y.A.;Su, P.J.;Hsieh, C.H.;Shiu, J.W.;Fuh, S.Y.;Lin, C.Y.;Cheng, W.Y.;Yang, J.C.;Lo, K.L.;Lee, D.W.;Lee, K.C.;Chang, Y.P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.830-833
    • /
    • 2006
  • In this work, we provided a novel test method to verify the sealing materials for flexible LCD cell. The ultraviolet type curing sealing material with low process temperature was suitable for LCD cell assembly. We also proposed the sealing materials which passed 13200 times bending test within 20 mm curvature.

  • PDF