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Abstract 

Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of 
streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave 
surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation 
wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. 
Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex 
wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours 
on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three 
different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as 
mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress 
measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress 
increases well beyond the flat plate boundary layer values.  By pre-setting much larger or much smaller vortex 
wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur. 
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1. Introduction 
Concave surface boundary layer flows are subjected to centrifugal instability due to the imbalance between radial pressure 

gradient and centrifugal force. This instability manifests itself as streamwise counter-rotating vortices inside the boundary layer 
flows and known as Görtler vortices (named after Görtler [1] who first analytically predicted their occurrence). 

Görtler vortices will occur in concave surface boundary layer flows as shown in Fig.1, if the so- called Görtler number Gθ, as 
defined by Smith [2]: 

 ( )θG U θ ν θ R∞=   (1) 
exceeds a critical value Gθcr, where ν is the fluid kinematic viscosity, θ the momentum thickness based on Blasius flat plate 
boundary-layer solution, U∞ the free-stream velocity, and R the concave surface radius of curvature. The vortices will be amplified 
downstream resulting in a three-dimensional boundary-layer due to streamwise momentum distribution which causes spanwise 
variation in the boundary-layer thickness, due to the formation of the so-called “upwash” region, where low momentum fluid 
moves away from the surface, and the so-called “downwash” region, where high speed outer fluid moves towards the surface (Fig. 
1). At “upwash”, the boundary-layer is thicker and the shear stress is lower than those at “downwash”.  

Since concave surfaces exist in many fluid engineering applications, such as turbine blades and aerofoils, the effects of Görtler 
vortices on boundary layer development, heat transfer and possibly deposition cannot be ignored.  

Recently, flows over dimpled surfaces, which are three-dimensional concave surfaces [3], also attracted some attention due to 
the potential applications in heat transfer enhancement [4] and possible drag reduction. 

Since the analytical work of Görtler [1], there have been many experiments on Görtler vortices. The early works were mainly 
in visualizing these vortices as reviewed by Winoto et al. [5]. 

The effects of Görtler vortices on heat transfer was first investigated by McCormack et al. [6] who reported 100 to 150% 
increase in Nusselt number on a concave surface in the presence of such vortices, compared with a reference flat plate. An 
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empirical relationship for laminar heat transfer enhancement by the vortices was proposed by Kan et al. [7] based on one set of 
measurements of mass transfer from a naphthalene-coated blade in a turbine cascade. They correlated the ratio of actual Nusselt 
number to that of flat plate as (1 + Gθ)1/2. Since then, there has been relatively little work on the thermal effects of Görtler vortices. 
The more recent works were done by Crane and Sabzvari [8], Crane and Umur [9], Momayez et al. [10-11]. 

 

 
Fig. 1 Sketch of Görtler vortices on a concave surface: (a) Flow configuration, and (b) Spanwise distribution of mean streamwise 

velocity U showing the definitions of vortex wavelength λ, downwash, and upwash regions. 
 

Computational works on Görtler instability were initially focused on establishing a unique stability curve. Floryan and Saric 
[12] found that the neutral curve appears to asymptotically level off at Gθ,cr = 0.4638 which can be considered as a critical value. 
Finnis and Brown [13] found that the minimum point of the unstable region occurs at Gθ = 1.38 for the dimensionless wave 
number αθ = 0.28. Different values of Gθ,cr were also obtained from experimental works. Moreover, Kottke and Mpourdis [14] did 
not detect any sign of instability when the screens that act as a source of disturbance were placed sufficiently far upstream. The 
above results show that the concept of a unique stability curve is not tenable in Görtler problem. The growth, as well as the 
wavelength selection mechanism, of Görtler vortices is fully governed by the receptivity process, as discussed by Denier et al. 
[15] and Bassom and Hall [16]. 

Assuming that only the most amplified vortices will occur in experiment, a method based on the Görtler vortex stability 
diagram (of Smith [2], for example) can be used to predict the experimental wavelength of Görtler vortices. In this method, the 
non-dimensional wavelength parameter Λ is defined as: 
 ( ) RλνλUΛ ∞=   (2) 

where λ is the most amplified Görtler vortex wavelength, and Λ represents a family of straight lines which cross the Görtler 
vortex stability diagram of Gθ versus αθ. (αθ is called dimensionless wave number and α (= 2π/λ) is called wave number). 
Luchini and Bottaro [17] found that the most amplified wavelengths are for Λ = 220 to 270, while Floryan [18], Smith [2], and 
Meksyn [19] respectively proposed Λ = 210, 272, and 227.  

Since the wavelengths of naturally developed Görtler vortices are not uniform, experimental investigations were biased due to 
the choice of “good” pair of Görtler vortices. Hence, Peerhossaini and Bahri [20], Ajakh et al.[21], Toe et al. [22] and more 
recently Mitsudharmadi et al. [23] used a series of thin wires placed upstream and perpendicular to the concave surface leading 
edge to pre-set or “force” the wavelength of Görtler vortices. The pre-set or forced wavelengths of the vortices were found to be 
uniform and equal to the spanwise distance of the wires.  

In this work, which was conducted at the Fluid Mechanics Laboratory of Department of Mechanical Engineering, NUS, hot-
wire anemometry was used to study concave surface boundary-layer flows in the presence of pre-set wavelength Görtler vortices. 
The vortex structures were visualized by plotting the contours of the streamwise velocity component data obtained from the hot-
wire measurements. 

2. Details of Experiment 
The experiments were conducted in transparent curved 60o and 90o bend test sections, connected to a low speed, blow down 

type wind tunnel. A smooth concave test surface is mounted inside the curved test section at 0.05 m from its bottom surface (Fig. 
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2). The test surface of R = 2 m is in the 60o bend test section and that of R = 1 m in the 90o. Each bend test section is of 
rectangular cross-section (0.15 m x 0.60 m), and 13 vertical wires of 0.2 mm diameter are placed at 10 mm prior and 
perpendicular to the concave surface leading edge to pre-set the vortex wavelength. The wire Reynolds number Red based on its 
diameter is 28 for U∞ = 2.1 m/s and 40 for U∞ = 3 m/s. Hence, no von Kárman vortex streets were generated behind the wires for 
both cases. 
 

 
Fig. 2 The wind tunnel, curved test section, and concave test surface (all dimensions are in mm). 

 
Since the most amplified wavelength of the vortices can be predicted by using the Görtler vortex stability diagram by setting Λ 

in the range of 200–270, the spanwise distance between the wires was first set at 15 mm for U∞ = 2.1 m/s (R = 1 m) and U∞ = 3.0 
m/s (R = 2 m) so that Λ = 249 and 252 respectively. The free-stream turbulence in each test section is about 0.35 % for U∞ = 1.0 to 
6.0 m/s.  

A single hot-wire probe (operated in a Constant Temperature Anemometer mode) was used to traverse along a spanwise 
distance of 60 mm to obtain the mean and fluctuating streamwise velocity component data. The probe was coupled to a signal 
conditioner. The signal was low pass filtered at 3000 Hz and sampled at 6000 Hz for 21 seconds. The data collected were digitized 
using an analog to digital converter card DT3016 installed in a personal computer, and further analyzed using the HPVEE 
software. 

A pressure transducer (calibrated against a micro-manometer) was used together with a Pitot-static tube placed in the free-
stream region for hot-wire calibration. During velocity measurements, the Pitot-static tube was placed in free-stream to monitor 
the local free-stream velocity. At the end of data acquisition, the probe was placed in the free-stream and calibration was re-
checked. A more than 2 % drift for the sensor was not acceptable and the data would be rejected, resulting in the calibration and 
data acquisition process to be repeated.  

The hot-wire probe and Pitot-static tube were mounted on a traversing mechanism. Two stepper motors controlled the 
mechanism movement along the normal (y) and spanwise (z) directions with ± 0.01 mm accuracy. Measurements on the y-z plane 
were done with step size of 1.0 mm in the z-direction, while in the y-direction the step size was 0.5-1.0 mm depending on the 
boundary-layer thickness at the measurement station. 

3. Results and Discussions 
The development of Görtler vortices in the boundary layers on concave surface of R = 1 m and 2 m is started with the linear 

and non-linear regions, followed by decay of mushroom structures prior to turbulence. The main differences are on the location of 
the onset of linear and non-linear regions which are related to the growth rate of the vortices as shown by the maximum value of 
streamwise disturbance amplitude κumax (see Eqn. (3)). Hence, discussion on the development of the vortices as represented by the 
velocity contours on y-z and x-z planes are focused for R = 2 m only. 

The U/U∞ contours in the cross-sectional (y-z) plane at some streamwise (x) locations were obtained from the measurement 
data by using “Tecplot” software, as shown in Fig. 3. For reference, the corresponding Blasius boundary-layer thickness δ is 
indicated on the ordinate for each streamwise location. At x = 200 mm (Gθ = 2.393), the contours are wavy in the spanwise 
direction, indicating the occurrence of Görtler vortices (Fig. 3(a)). The waviness becomes “stronger” as the flow develops 
downstream indicating amplification of the vortices, for example, at x = 500 mm (Figs. 3(c)) and when transformed into horseshoe 
vortices at x = 600 mm (Figs. 3(d)). The horseshoe vortices then became mushroom-like structures downstream before breaking 
down, as the consequence of the non-linear growth of Görtler vortices [24]. It shows the occurrence of the varicose mode of 
secondary instability. The mushroom-like vortices are clearly shown at x = 700 mm (Fig. 3(e)) until x = 852 mm (Fig. 3(i)). The 
vortices start to decay at x ≈ 800 mm, however at x = 904 mm (Fig. 3(i)) the mushroom shapes are still maintained The 
breakdown of the spanwise structures could be attributed to the increase of mixing due to the onset of turbulence. The mushroom-
like structures shown in Figs. 3(e)-(i) reveal the structures of finite amplitude Görtler vortices and the streamwise region in which 
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the mushroom-like structures are coherent and dominating the flow. The development of the mushroom-like structures is caused 
by the strong non-linearity on the y-z plane [24]. Close to the “stem” of the mushroom, low momentum fluid is ejected from the 
wall and returned back to the wall in the region of maximum shear to form the shape of mushroom hat. 

The U/U∞ contours on the x-z plane (Fig. 4) show streaks of low velocity (upwash) regions in green. The high velocity 
(downwash) regions occur in the area between wires where the boundary-layer is thinner than in the low velocity regions that 
occur downstream of each perturbation wire. These agree with Peerhossaini and Bahri [20] who performed an experiment where 
Gθ ranged from 2.0 to 7.7 at U∞ = 2.0 m/s for wire spacing of 30 mm, and R = 0.65 m concave surface.  

Figure 4(d) show three different regions identified as the 1st, 2nd, and 3rd regions based on the disturbance growth rate. Figure 5 
shows the growth rate of the Görtler vortices in term of the maximum disturbance amplitude κumax where κu (η) is defined by Eqn. 
(3). The smaller growth is initiated at x = 500 mm where the inflection point is first observed in the velocity profile at upwash (Fig. 
8(a)). This inflection point in the velocity profile can be used to predict the onset of non-linear region. Hence, in Fig. 4(d), the 
region depicted as the 2nd region is considered as the non-linear region in which the primary disturbance grows at a smaller rate 
than in the linear or the 1st region. 

In the 1st region, the width of the low speed streaks increases gradually until x ≈ 500 mm, which is attributed to the linear 
growth of Görtler vortices, followed by the 2nd region in which the width of the low speed streaks increases more rapidly. The 
difference in the width growth rate of the low speed streaks could be due to the transformation from the “wavy” shape into the 
“horseshoe” vortices that propagate downstream to form the “mushroom-like” structures. This transformation takes place at x ≈ 
500 mm, as shown in Fig. 3(c). The width of the low speed streaks that is invariant in the 3rd region indicates the finite amplitude 
of the disturbances. From the phenomena presented in Figs. 3(a)–(k), it is found that the 3rd region coincides with the region in 
which the mushroom-like structures are dominant in the boundary-layer flow. This region is followed by the meandering of the 
vortices which takes place at x ≈ 800 mm, as depicted in Figs. 4(a)–(d). This phenomenon indicates the presence of the secondary 
instability mode called sinuous mode that is believed to lead the flow to turbulence [25]. 

 

 
Fig. 3 Mean velocity (U/U∞) contours on y-z plane showing the development of Görtler vortices in boundary layer flow on  

concave surface of R = 2 m for U∞ = 3 m/s and wire spacing of 15.0 mm [26]. Note: δ is the Blasius boundary layer thickness. 
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Fig. 4 Mean velocity (U/U∞) contours on x-z plane on concave surface of R = 2 m at U∞ = 3 m/s:                    

(a) at y = 0.25δ, (b) at y = 0.50δ, (c) at y = 0.75δ, and (d) at y = δ, for 15.0 mm wire spacing (from Winoto et al. [25]).            
Note: δ is the Blasius boundary layer thickness. 

 
The streamwise disturbance amplitude κu (η) defined as [27]: 

 { }D U
u

U (η) U (η)
κ (η)

2U∞

−
=  (3) 

where UD is mean velocity at downwash, UU mean velocity at upwash and νx/Uy η ∞=  represents the dimensionless 
coordinate normal to the wall, was used by Finnis and Brown [13] to determine the maximum disturbance amplitude (κumax) at 
every streamwise (x) location. Figure 5 compares the streamwise variations of κumax for R = 1 m, R = 2 m, and R = 4 m of Finnis 
and Brown [28] who investigated naturally developing Görtler vortices in the linear region at U∞ = 7.5 and 10 m/s. While the 
present results (R = 1 m and 2 m) are of pre-set most amplified wavelength Görtler vortices. The slopes of straight lines in the 
semi-log chart, as shown in Fig. 5, correspond to the constant values of vortex growth rate β assumed in the normal-mode analysis 
Finnis and Brown [13]. 

Comparison with the case for R = 2 m in Fig 4(d) shows that κumax in the 2nd region increases exponentially with growth rate 
lower than that for the 1st region. This could be attributed to the occurrence of the 3rd region in which the finite amplitude of the 
disturbance is reached and the flow is dominated by the mushroom-like structures. This region is followed by the region where 
κumax decreases exponentially which shows the saturation of the disturbance amplitude. This agrees with Schmid and Henningson 
[29]. However, the spectrum analysis of the fluctuating component u′ shows that the secondary instabilities arise prior to the non-
linear saturation as exhibited by the formation of the peak in the spectrum with a band between 50 to 200 Hz at the streamwise 
location where the amplitude of the disturbance is still developing. 
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Fig. 5 Streamwise distribution of maximum disturbance amplitude showing the linear and non-linear (exponential) growth of 

vortices in the boundary layer flow on some concave surface radii of curvature. 
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Fig. 6 Maximum disturbance amplitude against Gθ on some different concave surfaces. 

 
As shown in Fig. 5, the linear region for R = 1 m, R = 2 m, and R = 4 m respectively range from 150–350 mm, 200–500 mm, 

and 356–980 mm. The linear region is shorter for shorter radius of curvature, as expected. The slopes obtained from the figure 
(which is a measure of the vortex growth rate) are respectively 7.42 m-1, 4.74 m-1, and 3.71 m-1 for R = 1 m, 2 m, 4 m at U∞ = 7.5 
m/s, and 3.78 m-1 for R = 4 m at U∞ = 10 m/s. Based on Finnis and Brown’s results [28], there is almost no significant effect of U∞ 
to the vortex growth rate as long as the radius of curvature is constant. However, the vortex growth rate increases steeper for 
shorter radius of curvatures. 

The non-linear development of Görtler vortices on concave surfaces of R = 1 m and 2 m ranges from 350-850 mm and 500-
805 mm, respectively. A smaller radius of curvature has a longer non-linear region than a larger one. However, the streamwise 
locations where the flow becomes turbulence are about the same for both cases, that is, at about x ≈ 850 mm. 

By replacing x in Fig. 5 with Gθ, as shown in Fig. 6, all points of κumax for pre-set wavelength Görtler vortices seem to lie on a 
single line. Similarly, all points of κumax for naturally developing Görtler vortices of Finnis and Brown [28] also lie on another line. 
It was not clear whether this was a coincidence or whether the vortex maximum amplitudes would also lie on the same line Finnis 
and Brown [28]. Based on the present results, it seems that all data points of κumax obtained from the same experimental set-up will 
lie on a single line, regardless of the values of U∞ and R. Experimental results with different wire spacings and free-stream 
velocities confirm this tendency. 

Figure 6 shows that the onset of linear and non-linear regions for both R = 1 and 2 m occur at about the same Gθ of 
respectively around 2.5 and 4.8. The maximum disturbance amplitude κumax at the onset of linear and non-linear regions is also 
about the same, respectively at 0.058 and 0.246. The maximum disturbance amplitude before meandering of secondary instability 
is about 0.32 regardless of the concave surface radius of curvature. Winoto and Crane [27] reported this value in the range of 0.3 
to 0.4. 

 

 
Fig. 7 Mean velocity (U/U∞) profiles across boundary layers on concave surface of R = 1 m for U∞ = 2.1 m/s               

at some streamwise (x) locations. 
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Fig. 8 Mean velocity (U/U∞) profiles across boundary layers on concave surface                            

of R = 2 m for U∞ = 3 m/s at some streamwise (x) locations. 
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Fig. 9 Boundary layer flow on concave surface of R = 1 m at U∞ = 2.1 m/s: (a) Spanwise distributions of U/U∞ at y/δ = 0.5          

and x = 350, 400, 450, 500, 600 and 750 mm, (b) U/U∞ contour at x = 400 mm (Gθ = 5.31). 
 

Alternatively, the start of non-linear region can be located by the formation of an inflection point in the boundary-layer 
velocity profile at upwash. The horseshoe vortices as the secondary instability of Görtler vortices are known to be caused by the 
high shear layer near the edge of the boundary-layer [18], which is a consequence of the formation of the inflection point in the 
velocity profile. The plots of U/U∞ against η at upwash and downwash are shown in Figs. 7 and 8 for the case of R = 1 m and 2 m, 
respectively. From these figures, it is clear that the development of the velocity profiles across the boundary layer is similar. 
Before the Görtler vortices become “stronger”, the profiles at upwash and downwash follow the Blasius profile. Farther 
downstream, the profiles become “thinner” at upwash and “fuller” at downwash. The inflection point subsequently appears at the 
upwash indicating the onset of the non-linear region at x = 350 mm and 500 mm for R = 1 m and 2 m, respectively. 

Referring to Fig. 5, the larger amplitude of the disturbances in the non-linear region will lead to point of inflection in the 
upwash velocity profiles as shown in Figs. 7(a) and 8(a). This agrees well with the results of Wortmann [30], Aihara and Koyama 
[31], and Swearingen and Blackwelder [32]. 
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Fig. 10 Boundary layer flow on concave surface of R = 2 m at U∞ = 3 m/s [23]: (a) Spanwise distributions of U/U∞ at y/δ = 0.5 

and x = 500, 600, 700, 745, 805 and 852 mm, (b) U/U∞ contour at x = 805 mm (Gθ = 6.87). 
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Fig. 11 Streamwise development of wall shear stress coefficient Cf (= τw /0.5ρU∞

2) at upwash, downwash,                
and spanwise-averaged on concave surface of R = 1 m for U∞  = 2.1 m/s and λm = 12 mm. 

 
Associated with the non-linear growth region of Görtler vortices, the spanwise variation of the streamwise velocity becomes 

flattened at the high velocity (downwash) region, and narrow and sharp at the low velocity (upwash) region [31] as shown in Figs. 
9(a) and 10(a) at y ≈ 0.5δ (where δ is the Blasius boundary-layer thickness) for some streamwise (x) locations in the non-linear 
region. These phenomena give rise to the transformation of the horseshoe structures into the mushroom-like structures observed in 
the velocity contours. Figures 9(b) and 10(b) show the horseshoe and mushroom-like structures at x = 400 mm for R = 1 m and at 
x = 805 mm for R = 2 m (the circles indicate the directions of movement of fluid particles in the streamwise counter-rotating 
vortices). Despite the inflectional points at the velocity profiles across the boundary layer, the spanwise distribution of the velocity 
is also inflected further downstream. Furthermore, the inflectional points at normal and spanwise directions are associated with the 
most unstable even and odd modes of secondary instability, respectively [33]. 

Computations [34-36] showed increasing wall shear stress τw in concave surface boundary layer flow as the effect of non-
linear development of Gortler instability. The present study reveals this phenomenon, as shown in Fig. 11. The spanwise-averaged 
wall shear stress, which initially decreases following the Blasius curve, starts to increase at x = 300 mm and increases further well 
beyond the flat plate turbulent boundary layer values. At downwash region, the wall shear stress initially decreases at the rate 
slightly lower than the Blasius curve, but at x = 250 mm it starts to increase significantly downstream until x = 450 mm. At the 
upwash region, the wall shear stress decreases faster than the Blasius curve until x = 300 mm. After reaching its minimum point, it 
increases to reach the Blasius curve and follows it closely until the transition to turbulence at x = 750 mm [37]. 
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Fig. 12 Spanwise-averaged wall shear stress coefficient fC versus Reynolds number Reθ for case 1: λm = 12 mm and U∞ = 2.8 

m/s, case 2: λm = 15 mm and U∞ = 2.1 m/s, and case 3: λm = 20 mm and U∞ = 1.3 m/s. 
 

 

 
Fig. 13 Spanwise distributions of wall shear stress coefficient Cf for λm = 15 mm and U∞ = 2.1 m/s                    

(----- is spanwise-averaged value fC  at the streamwise position). 
 

The streamwise developments of the spanwise-averaged τw for all the three cases are shown in Fig. 12, presented as spanwise-
averaged wall shear stress coefficient fC  and the streamwise (x) distance as Reynolds number Reθ (= U∞ θ/ν), where θ is the 
Blasius boundary layer momentum thickness. The figure shows the same development of fC for all cases, where it first decreases 
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and then increases further downstream. Before reaching their minima, fC for all cases seems to follow the same line. The values 
of Reθ at the minima are respectively 150, 140, and 110 for case 1 (λm = 12 mm), case 2 (λm = 15 mm), and case 3 (λm = 20 mm). 
These locations correspond to the same Görtler number Gθ ≈ 4.0. After their minimum points, the fC  curves increase 
significantly downstream until Reθ of 180, 170, and 140 for case 1, 2, and 3, respectively. These values of Reθ also correspond to 
the same Gortler number Gθ ≈ 6.0. This significant increase is due to the nonlinear effect and the appearance of secondary 
instability. Then farther downstream, the increasing rate of fC  reduces for a finite range of Reθ before a substantial increase 
occurs again as a result of increased mixing due to the onset of flow transition to turbulence. 

As shown in Fig. 12, the minimum wall shear stress fC  of larger vortices occurs at lower Reθ. After reaching their minima, 
larger vortices consistently produce higher wall shear stress at any value of Reθ. These may be due to the fact that larger vortices 
are more “vigorous” [38]. In addition, Görtler vortex wavelength also has a direct influence to the type of the secondary instability 
mode, which of course will affect the development of the wall shear stress [33]. 

The spanwise distributions of τw in term of Cf  for several streamwise positions are presented in Fig. 13, where the broken-line 
is the spanwise-averaged value fC at the corresponding streamwise position. Initially, the Cf spanwise distribution seems to 
correlate with the spanwise distribution of U/U∞. However, farther downstream, the spanwise distributions of Cf do not become 
flat at downwash and narrow at upwash, as shown in the spanwise distributions of U/U∞ in Figs. 9 and 10. Instead, the Cf 
distributions at downwash regions become narrower, and there is no inflection point found in the distributions. This may be 
because the sinuous mode of secondary instability, which is initiated near the boundary layer edge, is not strong enough to alter 
the distribution of the wall shear stress. This also explains why the increasing rate of Cf (in Figs. 11 and 12) reduces significantly 
prior to flow transition to turbulence. The main contribution to the τw enhancement in a concave surface boundary layer flow may 
be attributed to the varicose mode of the secondary instability. This is concluded from the fact that the waviness in Cf distribution 
becomes more pronounced and the spanwise-averaged value fC  increases significantly at the early stage of the nonlinear region 
where the flow instability, in the present work, is dominated by the varicose mode. 
 

 
Fig. 14 Distribution of turbulent intensity (Tu) across boundary layers on concave surface of R = 1 m for U∞ = 2.1 m/s           

at some streamwise (x) locations. 
 
 

 
Fig. 15 Distribution of turbulent intensity (Tu) across boundary layers on concave surface of R = 2 m for U∞ = 3 m/s             

at some streamwise (x) locations. 
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The high shear layer near the boundary-layer edge causes the formation of the second peak in the turbulence intensity (Tu) 

profile at the upwash region which was first observed at x = 350 mm and 500 mm for R = 1 m and 2 m respectively, as shown in 
Fig. 14(a) and 15(a). The formation of high shear layer initiates the development of horseshoe vortices as the initiation of the 
secondary instability [18]. As these horseshoe vortices propagate downstream and breakdown, the turbulence spreads out in the 
boundary-layer resulting in the decay of the second peak near the boundary-layer edge until the turbulence near the wall becomes 
dominant in the flow. The decay process of the second peak is related to the breakdown of vortex structure in the boundary-layer. 

The turbulence intensities at upwash are much higher than at downwash, implying that upwash region is the most unstable 
region in the boundary layer. Note that the turbulence intensities for R = 1 m (Fig. 14) are lower than those for R = 2 m (Fig. 15). 
This might be due to lower free-stream velocity for the case of R = 1 m. 

 

 
Fig. 16 Comparison of mean velocity (U/U∞) contours at x = 700 mm (Gθ = 6.87) and U∞ = 3.0 m/s for wire spacings of           

(a) 7.5 mm, (b) 15.0 mm, and (c) 30.0 mm (from Winoto et al. [40]). 
 
The development of Görtler vortices in concave surface boundary layer flow is dominated by the most amplified vortex 

wavelength which can be predicted by the wavelength parameter Λ in the range of 200-270. When Λ is much lower or greater than 
the values in the range, splitting and merging of Görtler vortices will occur in the non-linear region. These processes are shown in 
Fig. 16 by the mean velocity contours at x = 700 mm for R = 2 m. The merging of two mushroom-like structures in the spanwise 
locations z of about -25 mm and 27 mm is shown in Fig. 16(a) and the formation of the secondary mushroom-like structure in the 
middle of the wire spacing indicating the splitting of the vortices is shown in Fig. 16(c). These findings agree with Guo and Finlay 
[39] who computationally found that spatially developing Dean and Görtler vortices to be most unstable to spanwise disturbance 
with wavelength twice or 1.5 times of the dominant wavelength. Accordingly, due to the nonlinear growth of these perturbations, a 
small vortex pair is generated in-between two pairs of long wavelength vortices, but it forces two pairs of vortices with short 
wavelength to develop into one pair. 

The pre-set vortex wavelength of 15 mm (for which Λ = 249) is maintained downstream until the breakdown of the 
mushroom-like structures prior to turbulence. This is in contrast with the naturally developed Görtler vortices. 

In the Görtler vortex stability diagram of Gθ versus αθ (where α = 2π/λ) of Smith [2] shown in Fig. 17, the present results are 
well inside the unstable region. The wavelength parameter Λ as defined by Eq. (2), represents a family of straight lines on the 
stability diagram, which can be used to predict the wavelength of naturally developing Görtler vortices. The lines Λ = 88 and 732 
in the diagram represent the development of pre-set wavelength Görtler vortices for wire spacing of 7.5 mm and 30 mm 
respectively for U∞ = 3 m/s and R = 2 m. The results show that in the linear region, these pre-set vortex wavelengths are 
maintained. The merging and splitting of the vortices start after the linear region, and the vortex developments according to the 
lines Λ = 88 and 732 will then “switch” to the line Λ = 249. These confirm that λ = 15 mm (for which Λ = 249) is the most 
amplified vortex wavelength that will be maintained downstream prior to turbulence for boundary layer on concave surface of R = 
2 m for U∞ = 3 m/s, as reported earlier by Mitsudharmadi et al. [23]. The present case of λ = 15 mm for R = 1 m and U∞ = 2.1 m/s 
also corresponds to the most amplified wavelength with Λ = 252, and the development of the vortices is similar to those reported 
by Mitsudharmadi et al. [23]. 
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∆ Present results: R = 1 m, U∞ = 2.1 m/s 

● Mitsudharmadi et al. [23]:  
 R = 2 m, U∞ = 3 m/s 
▲, ■ Finnis and Brown [28]:  

R = 4 m, U∞ = 7.5 m/s and 10 m/s

Λ = 252 

 
Fig. 17 Some experimental results in Görtler vortex stability diagram of Smith [2]. 

 

4. Conclusion 
From the hot-wire data, the flow fields of pre-set wavelength Görtler vortices are visualized. The vortices were amplified 

dowstream until the start of boundary layer transition where Gθ = Gθtr [23]. This study provides more information on the instability 
in concave surface boundary layers. The pre-set vortex wavelength is found to equal the spanwise spacing of the vertical wires in 
the streamwise direction until the vortices breakdown prior to turbulence when the wavelength parameter Λ was set in the range of 
200 to 270.  

The U/U∞ contours for 15 mm wire spacing on the x-z and y-z planes show that the spanwise modulation of streamwise 
velocity U, which indicates the vortex wavelength, is equal to the spanwise spacing of the wires. The velocity contours in the y-z 
plane show the non-linear region of the vortices where the boundary-layer is dominated by the mushroom-like structures that have 
reached finite amplitude. This region is followed by the meandering of the vortices which indicates the presence of sinuous mode 
secondary instability that rapidly leads the flow to turbulence.  

The streamwise variations of maximum disturbance amplitude κumax for different concave surfaces show that shorter radius of 
curvature results in higher growth rate in the linear region and lower growth rate in the non-linear region. If κumax is plotted against 
Gθ, all the data from the same experimental set-up follow a single line, and the onset of linear and non-linear regions for pre-set 
wavelength Görtler vortices occur nearly at the same points. 

Measurements of wall shear stress on concave surface of R = 1 m reveal that the spanwise-averaged wall shear stress increases 
well beyond the flat plate boundary layer values. 

The appearance of the second peak near the boundary-layer edge in the turbulence intensity profiles at the upwash shows the 
formation of high shear layer near the boundary-layer edge. As the turbulence spreads into the boundary-layer, the second peak 
decays, which coincides with the breakdown of the vortex structure in the boundary-layer. 

The effect of wire spacing to the pre-set wavelength Görtler vortices shows the splitting and merging of the vortices. 

Nomenclature 
d 
Gθ 

Gθ,cr 
Gθtr 
Cf 

fC  
R 
Red 
Reθ 
 
Tu 
U 
U∞ 
UU 
UD 
x 

Vertical wire diameter [m] 
Görtler number 
Critical Görtler number 
Transitional Görtler number 
Wall shear stress coefficient (=τw/(0.5ρU∞

2) 
Spanwise average wall shear stress coefficient 
Radius of curvature [m] 
Reynolds number based on wire diameter (≡U∞d/v) 
Reynolds number based on Blasius boundary layer 
momentum thickness (≡U∞θ/v) 
Turbulence intensity 
Streamwise mean velocity [m/s] 
Free-stream velocity [m/s] 
Streamwise mean velocity at upwash [m/s] 
Streamwise mean velocity at downwash [m/s] 
Streamwise coordinate [m] 

y 
z 
α 
αθ 
β 
δ 
η 
θ 
κu 
κumax 
λ 
λm 
Λ 
ν 
τw 
 

Normal coordinate [m] 
Spanwise coordinate [m] 
Wave number (≡2π/λ) [m-1] 
Dimensionless wave number 
Vortex growth rate [m-1] 
Blasius boundary layer thickness [m] 
Dimensionless normal coordinate (≡y(U∞ /xν)1/2) 
Blasius boundary layer momentum thickness [m] 
Disturbance amplitude 
Maximum disturbance amplitude 
Vortex wavelength [m] 
The most amplified vortex wavelength [m] 
Non-dimensional wavelength parameter 
Fluid kinematic viscosity [m2/s] 
Wall shear stress [N/m2] 
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