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REEB FLOW INVARIANT UNIT TANGENT SPHERE

BUNDLES

Jong Taek Cho and Sun Hyang Chun∗

Abstract. For unit tangent sphere bundles T1M with the stan-
dard contact metric structure (η, ḡ, φ, ξ), we have two fundamental
operators that is, h = 1

2
£ξφ and ` = R̄(·, ξ)ξ, where £ξ denotes

Lie differentiation for the Reeb vector field ξ and R̄ denotes the
Riemmannian curvature tensor of T1M . In this paper, we study
the Reeb flow invariancy of the corresponding (0, 2)-tensor fields H
and L of h and `, respectively.

1. Introduction

For a given contact metric structure (η, ḡ, φ, ξ), a symmetry type
occurs when the geodesic flow generated by ξ, which is called the Reeb
flow, leaves some structure tensors invariant. This is always the case for
ξ and η since £ξξ = 0 and £ξη = 0. The metric ḡ is left invariant by
the Reeb flow (or equivalently, the flow consists of local isometries or
ξ is a Killing vector field) if and only if φ is preserved under the Reeb
flow. Apart from the defining structure tensors η, ḡ, φ and ξ, two other
operators play a fundamental role in contact metric geometry, namely,
the structural operator h = 1

2 £ξφ and the characteristic Jacobi operator

` = R̄(·, ξ)ξ, where £ξ denotes Lie differentiation in the characteristic
direction ξ.

An important topic in the study of the contact metric structure
(η, ḡ, φ, ξ) on unit tangent sphere bundles T1M is to determine those
Riemannian manifolds (M, g) for which the corresponding contact met-
ric structure enjoys such a symmetry along the Reeb flow. In fact,
Y. Tashiro ([11]) proved that ξ is a Killing vector on the unit tangent
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sphere bundle T1M if and only if (M, g) has constant curvature c = 1. E.
Boeckx and the present authors ([6]) proved that T1M satisfies £ξh = 0
if and only if (M, g) is of constant curvature c = 1 and T1M satisfies
£ξ` = 0 if and only if (M, g) is of constant curvature c = 0 or c = 1.

In the present paper, we define the (0,2)-tensor fields L and H by
L(X̄, Ȳ ) = g(`X̄, Ȳ ) and H(X̄, Ȳ ) = g(hX̄, Ȳ ) for any vector fields X̄
and Ȳ on M̄ and we investigate when the (0,2)-tensor fields L and H
on T1M are preserved by the geodesic flow. Namely, we prove:

Theorem 1. Let T1M be the unit tangent sphere bundle with the
standard contact metric structure (η, ḡ, φ, ξ). Then T1M satisfies £ξL =
0 if and only if (M, g) is of constant curvature c = −4, c = 0 or c = 1.

Theorem 2. Let T1M be the unit tangent sphere bundle with the
standard contact metric structure (η, ḡ, φ, ξ). Then T1M satisfies £ξH =
0 if and only if (M, g) is of constant curvature c = −1 or c = 1.

From the results in [6] and Theorems 1 and 2, we find an evident
distinction of the Reeb flow invariancy between h, ` and the correspond-
ing (0, 2)-tensor fields H, L, respectively. That is, T1H(−1) satisfies
£ξH = 0, but £ξh 6= 0. And T1H(−4) satisfies £ξL = 0, but £ξ` 6= 0.

2. The standard contact metric structure on a unit tangent
sphere bundle

We start by reviewing some fundamental facts on contact metric man-
ifolds. We refer to [1] for more details. All manifolds are assumed to
be connected and of class C∞. A (2n − 1)-dimensional manifold M̄ is
said to be a contact manifold if it admits a global 1-form η such that
η ∧ (dη)n−1 6= 0 everywhere on M̄ , where the exponent denotes the
(n−1)-th exterior power of the exterior derivative dη of η. We call such
η a contact form of M̄ . It is well known that given a contact form η,
there exists a unique vector field ξ, which is called the characteristic vec-
tor field or the Reeb vector field, satisfying η(ξ) = 1 and dη(ξ, X̄) = 0 for
any vector field X̄ on M̄ . A Riemannian metric ḡ on M̄ is an associated
metric to a contact form η if there exists a (1, 1)-tensor field φ satisfying

(2.1) η(X̄) = ḡ(X̄, ξ), dη(X̄, Ȳ ) = ḡ(X̄, φȲ ), φ2X̄ = −X̄ + η(X̄)ξ,

where X̄ and Ȳ are vector fields on M̄ . From (2.1) it follows that

φξ = 0, η ◦ φ = 0, ḡ(φX̄, φȲ ) = ḡ(X̄, Ȳ )− η(X̄)η(Ȳ ).
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A Riemannian manifold M̄ equipped with structure tensors (η, ḡ, φ, ξ)
satisfying (2.1) is said to be a contact metric manifold. Given a contact
metric manifold M̄ , we define the structural operator h by h = 1

2£ξφ,
where £ denotes Lie differentiation. Then we may observe that h is
self-adjoint and satisfies

hξ = 0 and hφ = −φh,(2.2)

∇̄X̄ξ = −φX̄ − φhX̄,(2.3)

where ∇̄ is the Levi-Civita connection on M̄ . From (2.2) and (2.3) we see
that each trajectory of ξ is a geodesic. We denote by R̄ the Riemannian
curvature tensor defined by

R̄(X̄, Ȳ )Z̄ = ∇̄X̄(∇̄Ȳ Z̄)− ∇̄Ȳ (∇̄X̄ Z̄)− ∇̄[X̄,Ȳ ]Z̄

for all vector fields X̄, Ȳ , Z̄ on M̄ . Along a trajectory of ξ, the Jacobi
operator ` = R̄(·, ξ)ξ is a symmetric (1, 1)-tensor field. We call it the
characteristic Jacobi operator. We have

` = φ`φ− 2(h2 + φ2),(2.4)

∇̄ξh = φ− φ`− φh2.(2.5)

A contact metric manifold for which ξ is Killing is called a K-contact
manifold. It is easy to see that a contact metric manifold is K-contact
if and only if h = 0 or, equivalently, ` = I − η ⊗ ξ.

The basic facts and fundamental formulae about tangent bundles are
well-known (cf. [7], [9], [13]). We briefly review some notations and
definitions. Let (M, g) be an n-dimensional Riemannian manifold and
∇ the associated Levi-Civita connection. R denotes its Riemannian
curvature tensor. The tangent bundle over (M, g) is denoted by TM
and consists of pairs (p, u), where p is a point in M and u a tangent
vector to M at p. The mapping π : TM → M, π(p, u) = p, is the
natural projection from TM onto M . For a vector field X on M , its
vertical lift Xv on TM is the vector field defined by Xvω = ω(X) ◦ π,
where ω is a 1-form on M . For the Levi-Civita connection ∇ on M , the
horizontal lift Xh of X is defined by Xhω = ∇Xω. The tangent bundle
TM can be endowed in a natural way with a Riemannian metric g̃, the
so-called Sasaki metric, depending only on the Riemannian metric g on
M . It is determined by

g̃(Xh, Y h) = g̃(Xv, Y v) = g(X,Y ) ◦ π, g̃(Xh, Y v) = 0
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for all vector fields X and Y on M . Also, TM admits an almost complex
structure tensor J defined by JXh = Xv and JXv = −Xh. Then g̃ is a
Hermitian metric for the almost complex structure J .

The unit tangent sphere bundle π̄ : T1M → M is a hypersurface of
TM given by gp(u, u) = 1. Note that π̄ = π ◦ i, where i is the immersion
of T1M into TM . A unit normal vector field N = uv to T1M is given by
the vertical lift of u for (p, u). The horizontal lift of a vector is tangent
to T1M , but the vertical lift of a vector is not tangent to T1M in general.
So, we define the tangential lift of X to (p, u) ∈ T1M by

Xt
(p,u) = (X − g(X,u)u)v.

Clearly, the tangent space T(p,u)T1M is spanned by vectors of the form

Xh and Xt, where X ∈ TpM .

We now define the standard contact metric structure of the unit tan-
gent sphere bundle T1M over a Riemannian manifold (M, g). The metric
g′ on T1M is induced from the Sasaki metric g̃ on TM . Using the almost
complex structure J on TM , we define a unit vector field ξ′, a 1-form η′

and a (1,1)-tensor field φ′ on T1M by

ξ′ = −JN, φ′ = J − η′ ⊗N.
Since g′(X̄, φ′Ȳ ) = 2dη′(X̄, Ȳ ), (η′, g′, φ′, ξ′) is not a contact metric
structure. Rectifying this by

ξ = 2ξ′, η =
1

2
η′, φ = φ′, ḡ =

1

4
g′,

we get the standard contact metric structure (η, ḡ, φ, ξ). Here the tensor
φ is explicitly given by

(2.6) φXt = −Xh +
1

2
g(X,u)ξ, φXh = Xt,

where X and Y are vector fields on M .
From now on, we consider T1M = (T1M ; η, ḡ, φ, ξ) with the standard

contact metric structure. Then the Levi-Civita connection ∇̄ of T1M is
described by

∇̄XtY t = −g(Y, u)Xt,

∇̄XtY h =
1

2
(R(u,X)Y )h,

∇̄XhY t = (∇XY )t +
1

2
(R(u, Y )X)h,

∇̄XhY h = (∇XY )h − 1

2
(R(X,Y )u)t

(2.7)
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for all vector fields X and Y on M (cf. [2], [3]).
For the Riemannian curvature tensor R̄, we give only the two expres-

sions we need for the characteristic Jacobi operator `:

R̄(Xt, Y h)Zh =− 1

2
{R(Y, Z)(X − g(X,u)u)}t

+
1

4
{R(Y,R(u,X)Z)u}t

− 1

2
{(∇YR)(u,X)Z}h,

R̄(Xh, Y h)Zh =(R(X,Y )Z)h +
1

2
{R(u,R(X,Y )u)Z}h

− 1

4
{R(u,R(Y,Z)u)X −R(u,R(X,Z)u)Y }h

+
1

2
{(∇ZR)(X,Y )u}t

(2.8)

for all vector fields X, Y and Z on M . From ξ = 2uh and (2.7), it
follows

(2.9) ∇̄Xtξ = −2φXt − (RuX)h, ∇̄Xhξ = −(RuX)t

where Ru = R(·, u)u is the Jacobi operator associated with the unit
vector u. From (2.3) and (2.9), it follows that

hXt = Xt − (RuX)t,

hXh = −Xh +
1

2
g(X,u)ξ + (RuX)h.

(2.10)

Using the formulae (2.8), we get

`Xt = (R2
uX)t + 2(R′uX)h,

`Xh = 4(RuX)h − 3(R2
uX)h + 2(R′uX)t

(2.11)

where R′u = (∇uR)(·, u)u and R2
u = R(R(·, u)u, u)u. By using (2.5),

(2.6) and (2.8) we obtain

(∇̄ξh)Xt = −2(RuX)h + 2(R2
uX)h − 2(R′uX)t,

(∇̄ξh)Xh = −2(RuX)t + 2(R2
uX)t + 2(R′uX)h.

(2.12)

Finally, from (2.7) and (2.11) we compute

(∇̄ξ`)Xt = 4(R′uRuX +RuR
′
uX)t + 4(R′′uX +R2

uX −R3
uX)h,

(∇̄ξ`)Xh = 8(R′uX −R′uRuX −RuR′uX)h + 4(R′′uX +R2
uX −R3

uX)t.
(2.13)

The above formulae (2.9) ∼ (2.13) are also found in [4], [5], [6].
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We define the (0,2)-tensor fields H and L by H(X̄, Ȳ ) = g(hX̄, Ȳ )
and L(X̄, Ȳ ) = g(`X̄, Ȳ ) for any vector fields X̄ and Ȳ on M̄ , respec-
tively.

3. Proofs of Theorems

Proof of Theorem 1.
At first, from the definition of Lie differentiation and (2.3), we have

(£ξL)(X̄, Ȳ )

= ξL(X̄, Ȳ )− L(£ξX̄, Ȳ )− L(X̄,£ξȲ )

= g((∇̄ξ`)X̄, Ȳ ) + g(`(∇̄X̄ξ), Ȳ ) + g(`X̄,∇Ȳ ξ)
= g((∇̄ξ`)X̄, Ȳ ) + g(−`φX̄ − `φhX̄, Ȳ ) + g(`X̄,−φȲ − φhȲ ).

(3.1)

From (3.1), we see that the condition £ξL = 0 is equivalent to

(3.2) ∇̄ξ` = `φ− φ`+ `φh− hφ`.

Now we suppose that T1M satisfies £ξL = 0. Then from (3.2), by a
straightforward calculation, we have two equations:

0 =(4R′uX +R′uRuX +RuR
′
uX)t

+ (2R′′uX − 3R2
uX −R3

uX + 4RuX)h,
(3.3)

0 =(4R′uX − 5R′uRuX − 5RuR
′
uX)h

+ (2R′′uX − 3R2
uX −R3

uX + 4RuX)t.
(3.4)

These equations are equivalent to the conditions:

4R′uX +R′uRuX +RuR
′
uX = 0,(3.5)

4R′uX − 5R′uRuX − 5RuR
′
uX = 0,(3.6)

2R′′uX − 3R2
uX −R3

uX + 4RuX = 0(3.7)

for all vector fields X on M . From (3.5) and (3.6), we obtain R′uX = 0.
This implies that (M, g) is a locally symmetric space ([8], [12]). Further,
we see from (3.7) that the eigenvalues of Ru are constant and equal to 0
or 1 or −4, i.e., (M, g) is a globally Osserman space (i.e., the eigenvalues
of Ru do not depend on the point p and not on the choice of unit vector
u at p). However, a locally symmetric globally Osserman space is locally
flat or locally isometric to a rank one symmetric space ([10]). Therefore,
we conclude that M is a space of constant curvature c = 0 or c = 1
or −4. Conversely, if (M, g) is of constant curvature c, then we can
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calculate the following explicit expressions for h, `, ∇̄ξh and ∇̄ξ` from
(2.10) ∼ (2.13):

hXt = (1− c)Xt, hXh = (c− 1)(Xh − 1

2
g(X,u)ξ),

`Xt = c2Xt, `Xh = (4c− 3c2)(Xh − 1

2
g(X,u)ξ),

(∇̄ξh)Xt = 2(c2 − c)(Xh − 1

2
g(X,u)ξ), (∇̄ξh)Xh = 2(c2 − c)Xt,

(∇̄ξ`)Xt = 4(c2 − c3)(Xh − 1

2
g(X,u)ξ), (∇̄ξ`)Xh = 4(c2 − c3)Xt

(3.8)

for vector fields X on M . From (3.8), we easily check that T1M satisfies
(3.2) when c = −4, c = 0 or c = 1. �

Proof of Theorem 2.
From the definition of Lie differentiation and (2.3), we have

(£ξH)(X̄, Ȳ )

= ξH(X̄, Ȳ )−H(£ξX̄, Ȳ )−H(X̄,£ξȲ )

= g((∇̄ξh)X̄, Ȳ ) + g(h(∇̄X̄ξ), Ȳ ) + g(hX̄, ∇̄Ȳ ξ)
= g((∇̄ξh)X̄, Ȳ ) + g(−hφX̄ − hφhX̄, Ȳ ) + g(hX̄,−φȲ − φhȲ )

= g((∇̄ξh)X̄, Ȳ ) + 2g(φhX̄, Ȳ ).

(3.9)

From (3.9), we see that the condition £ξH = 0 is equivalent to

(3.10) ∇̄ξh = 2hφ.

We suppose that T1M satisfies £ξH = 0. Then from (3.10), by a
straightforward calculation, we have two equations:

(R2
uX −X)h − (R′uX)t = 0,(3.11)

(R2
uX −X)t + (R′uX)h = 0(3.12)

for any vector field X perpendicular to u on M . From (3.11) and (3.12),
we obtain R2

uX − X = 0 and R′uX = 0. Using the similar arguments
as in the proof of Theorem 1, we can conclude that the base manifold
(M, g) must be locally symmetric and of constant curvature 1 or −1.
Conversely, when (M, g) has constant curvature c = −1 or c = 1, we
show that (3.10) holds. �
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sectionelle holomorphe constante, J. Reine Angew. Math. 279 (1974), 797-800.

[9] O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle
of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.

[10] P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a
conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford
46 (1995), 299-320.

[11] Y. Tashiro, On contact structures of unit tangent sphere bundles, Tôhoku
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