• Title/Summary/Keyword: Grashof 수

Search Result 26, Processing Time 0.017 seconds

Mass transfer study of double diffusive natural convection in a two-dimensional enclosure during the physical vapor transport of mercurous bromide (Hg2Br2): Part II. Mass transfer (브로민화 수은(I)(Hg2Br2) 물리적 증착공정의 2차원 밀폐공간에서 이중확산 자연 대류에서의 물질전달 연구: Part II. 물질전달)

  • Sung Ho Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.145-152
    • /
    • 2023
  • The average Nusselt numbers in the source and crystal region for the variation of thermal Grashof number (Grt) in the range of 2.31 × 104 ≤ Grt ≤ 4.68 × 104 are obtained through numerical simulations. It is shown the average Nusselt number in the crystal region is more than twice as large as the average Nusselt number in the source region. The average Nusselt number in the source region shows an increasing tendency with increasing the thermal Grashof number, Grt, while the average Nusselt number in the crystal region shows a decreasing tendency with increasing thermal Grashof number, Grt. For the variation of the solutal Grashof number (Grs) in the ran ge of 3.28 × 105 ≤ Grs ≤ 4.43 × 105, the average Sherwood number in the source region and crystal region tends to decrease as the solutal Grashof number, Grs increases. The average Sherwood number in the crystal region is about four times greater than the average Sherwood number in the source region.

Effect of Pyrolyzing Fuel Position on Ignition and Flame Propagation in a Cylindrical Enclosure (원형공간내 열분해 연료의 위치변화에 따른 점화 및 화염전파 영향)

  • Han, Jo-Yeong;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.133-142
    • /
    • 2001
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Therefore in all cases presented here, the intrinsic radiation effects are considered. Numerical studies have been performed over various governing parameters, such as Grashof number, overheat ratio, and vertical fuel eccentricity. Depending on the Grashof number, the flame behavior is found to be totally different: a separated visible flame appears as the Grashof number reaches 10(sup)7. The location of flame onset is also affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

Numerical Study of the Thermal Effects on the Centrifugal Instability (온도 분포가 원심 불안정성에 미치는 영향에 대한 전산해석적 연구)

  • Hwang Jong-Yeon;Mutabazi Innocent;Lee Sung-Su;Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.578-586
    • /
    • 2006
  • Numerical simulations are carried out to investigate the thermal effects of the gravitational potential on the centrifugal instability of a Taylor-Couette flow, and to further study the detailed flow fields and flow bifurcations to spiral vortices. The effects of centrifugal potential on the centrifugal instability are also investigated in the current study. Spiral vortices have various types of mode depending on Grashof number and Reynolds number. The correlation of Richardson number with the spiral angle of the spiral vortices shows that the structure of the spiral vortices strongly depends on the Richardson number. The heat transfer rate of the inner cylinder increases with increasing Grashof number. It is also confirmed that the torque required to rotate the inner cylinder increases as Grashof number increases.

A Numerical Study on the Natural Convection from a Square Beam with a Horizontal Adiabatic Plate (수평단열판에 부착된 등온사각비임에서의 자연대류 열전달에 관학 수치해석)

  • Bae, Sok-Tae;Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 1990
  • Steady laminar natural convection heat transfer from a square beam with a horizontal adiabatic plate has been studied numerically for various Grashof numbers and beam shapes. The heat transfer from a square beam increases as the dimensionless beam width W / L decreases. The mean Nusselt number of the upper surface is minimum at W / L = 1.0, maximum at W / L = 0.25 and that of the side surface is minimum at W / L = 0.25, maximum at W / L = 1.0. The increases of the total mean Nusselt number with increasing Grashof number is dominated by the beam width.

  • PDF

Natural Convection in a Rectangular Cavity Washed Externally by a Turbulent Boundary Layer (외부 난류 경계층과 결합된 직사각형 공동에서의 자연대류)

  • 최철진;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.518-527
    • /
    • 1985
  • 대류-대류의 복합 열전달 문제를 유한차분법을 사용하여 수치적으로 연구하였다. 아래로부터 가열되는 직사각형 공동 내에서의 자연 대류와 공동 위쪽의 외부 난류 경계층 유동이 복합된 경우의 열전당 현상을 고려하였다. 두개의 서로 다른 모우드의 대류가 온도 분포가 미리 알려져 있지 않은 얇은 수평평판에 의해 분리되어져 있다는 점이 본 논문의 특이점이다. 수치적 해석은 Reynolds 수와 Grashof 수 및 공동의 기하학적 종횡비의 매개 변수적 효과가 발견되도록 행하여 졌다. 외부 난류 경계층 유동의 강도에 따라 공동 내에서의 유동 형태가 변할 수 있음을 알았다. 즉 내부 부력 세포의 회전 방향은 외부 유동의 존재에 의해 특성적으로 정해지며 공동 내의 유동 세포의 수는 Grashof 수가 증가 할수록 많아진다.

Natural Convection Heat Transfer Past an Outer Rectangular Corner (외부 직각모서리 부근에서의 자연대류 열전달)

  • 신순철;장근식;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.598-605
    • /
    • 1985
  • Laminar natural convection heat transfer past an outer rectangular corner was experimentally investigated by using Mach-Zehnder interferometer. The present geometry represents the case when the plume from a vertical flat plate and that from a horizontal one merge into a single plume. the temperature distribution and the local heat flux were measured in the range of Grashof number 8 * 10$^{4}$$r_{LH}$ <1.25 * 10$^{6}$ . The effect of the geometric aspect ratio was also considered. Correlation for the average Nusselt number vs. Grashof number was obtained by using a newly determined characteristic length. To determine the interaction of the plumes, the present results were compared with the similarity solutions available from the isolated vertical and isolated horizontal flat plates.

An Experimental Study on the Natural Convection Heat Transfer with a Heat Source in a Top-Vented Cylindrical Enclosure (내부열원을 갖는 Top-vented 원통형 밀폐공간에서의 자연대류에 관한 실험적 연구)

  • Kang, Kweon-Ho;Shin, Hyun-Kyoo;Shin, Chee-Burm;Yoo, Jai-suk;Kim, Chul;Park, Young-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.203-208
    • /
    • 1996
  • An experimental study was conducted on the natural convection heat transfer with a heat source (heater) in a top-vented cylindrical enclosure. Using an Air Controlled Oxidizer (ACO) for treatment of depleted uranium chips, the heat transfer characteristics of the ACO was studied with various heat generation. Heat flux, Nusselt number, Grashof number and Rayleigh number were obtained and the relation between Nusselt number and Rayleigh number was derived.

  • PDF

A Numerical Study on Mixed Convection Heat Transfer in Concentric Curved Annuli (동심환형 곡관의 혼합대류 열전달 현상에 관한 수치적 연구)

  • 최훈기;유근종
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.283-290
    • /
    • 2002
  • Numerical calculations have been carried out for the mixed convection flow in a concentric curved annulus with constant heat flux boundary condition at inner wall. The flow is assumed to be fully developed so as to maintain a constant streamwise pressure and temperature gradient. Computations have been performed for flows of radius ratio 0.2 and 0.5 with the Dean number lying in the range 0$K^{1/2}$ for the wide range of the Dean number considered here.

HYDROMAGNETIC FLOW IN A CAVITY WITH RADIATIVELY ACTIVE WALLS (복사벽면으로 구성된 캐비티 내 전자열유체 유동)

  • Han, Cho-Young;Chae, Jong-Won;Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.87-94
    • /
    • 2010
  • Hydromagnetic flow in a cavity under a uniform magnetic field is studied numerically. The cavity is comprised of four radiatively active surfaces. Due to large temperature difference inside a cavity, the radiative interaction between walls is taken into account. The coupled momentum and energy equations are solved by SIMPLER algorithm while the radiant heat exchanges are obtained by the finite volume method for radiation. A Wide range of Grashof numbers is examined as a controlling parameter. Resultant flow and heat transfer characteristics are investigated as well.

Mixed convection from two isothermal, vertical, parallel plates (등온 수직 평판에서의 혼합대류 열전달)

  • 박문길;이재신;양성환;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1645-1651
    • /
    • 1990
  • The steady laminar mixed convection from two finite vertical parallel plates has been studied by numerical procedure. The governing equations are solved by the finite difference method and point successive over relaxation scheme at R3=100-1000, Gr=0-10$^{6}$ , Pr=0.71 and dimensionless plate spacing b/$\ell$=0.05-0.1. The plume interaction caused by the thermal interference of two plates is observed. As Reynolds numbers are increased, optimum plate spacings are moved to narrow spacings at the same Grashof number, and as Grashof numbers are increased, to wide spacings at the same Reynolds number.