DOI QR코드

DOI QR Code

Numerical Study of the Thermal Effects on the Centrifugal Instability

온도 분포가 원심 불안정성에 미치는 영향에 대한 전산해석적 연구

  • 황종연 (인하대학교 기계기술공동연구소) ;
  • ;
  • 이승수 (충북대학교 구조시스템공학과) ;
  • 윤동혁 (인하대학교 대학원 기계공학과) ;
  • 양경수 (인하대학교 기계공학부)
  • Published : 2006.06.01

Abstract

Numerical simulations are carried out to investigate the thermal effects of the gravitational potential on the centrifugal instability of a Taylor-Couette flow, and to further study the detailed flow fields and flow bifurcations to spiral vortices. The effects of centrifugal potential on the centrifugal instability are also investigated in the current study. Spiral vortices have various types of mode depending on Grashof number and Reynolds number. The correlation of Richardson number with the spiral angle of the spiral vortices shows that the structure of the spiral vortices strongly depends on the Richardson number. The heat transfer rate of the inner cylinder increases with increasing Grashof number. It is also confirmed that the torque required to rotate the inner cylinder increases as Grashof number increases.

Keywords

References

  1. Wereley, S. T. and Lueptow, R. M., 1998, 'Spatio-temporal Character of Non-wavy and Wavy TaylorCouette Flow,' J. Fluid Mech., Vol. 364, pp. 59-80 https://doi.org/10.1017/S0022112098008969
  2. Hwang, J. Y. and Yang, K. S., 2004, 'Numerical Study of Taylor-Couette Flow with an Axial Flow,' Computers and Fluids, Vol. 33, pp. 97-118 https://doi.org/10.1016/S0045-7930(03)00033-1
  3. Boubnov, B. M., Gledzer, E. B. and Hopfinger, E. J., 1995,' 'Stratified Circular Couette Flow: Instability and Flow Regimes,' J. Fluid Mech., Vol. 292, pp. 333-358 https://doi.org/10.1017/S0022112095001558
  4. Synder, H. A. and Karlsson, S.K.F., 1964, 'Experiments on the Stability of Couette Motion with a Radial Thermal Gradient,' Physics of Fluids, Vol. 7, No. 10,pp. 1696-1706 https://doi.org/10.1063/1.1711076
  5. Chen, J. C. and Kuo, J. Y., 1990, 'The Linear Stability of Steady Circular Couette Flow with a Small Radial Temperature Gradient,' Physics of Fluids, Vol. 2, No.9, pp. 1585-1591 https://doi.org/10.1063/1.857565
  6. Bahloul, A., Mutabazi, I. and Ambari, A., 2000, 'Codimension 2 Points in the Flow Inside a Cylindrical Annulus with a Radial Temperature Gradient,' The European Physical J., Applied Physics, Vol. 9, pp. 253-264 https://doi.org/10.1051/epjap:2000112
  7. Bot, P. and Mutabazi, I., 2000, 'Dynamics of Spatio-Temporal Defects in the Taylor-Dean System,' The European Physical J. B, Vol. 13, pp. 141-155 https://doi.org/10.1007/s100510050018
  8. Goharzadeh, A. and Mutabazi, I., 2001, 'Experimental Characterization of Intermittency Regimes in the Couette-Taylor System,' The European Physical J. B, Vol. 19, pp. 157-162 https://doi.org/10.1007/s100510170360
  9. Kuo, D. C. and Ball, K. S., 1997, 'Taylor-Couette Flow with Buoyancy: Onset of Spiral Flow,' Physics of Fluids, Vol. 9, No. 10, pp. 2872-2884 https://doi.org/10.1063/1.869400
  10. Kedia, R., Hunt, M. L. and Colonius, T., 1998, 'Numerical Simulations of Heat Transfer in Taylor Couette Flow,' J. Heat Transfer, Vol. 120, pp. 65-71 https://doi.org/10.1115/1.2830066
  11. Rosenfeld, M., Kwak, D. and Vinokur, M., 1991, 'A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems,' Journal of Computational Physics, Vol. 94, pp. 102-137 https://doi.org/10.1016/0021-9991(91)90139-C
  12. Hwang, J. Y. and Yang, K. S., 2003, 'On the Structures of Taylor Vortices,' Trans. of the KSME B, Vol. 27, No.8, pp. 1081-1088 https://doi.org/10.3795/KSME-B.2003.27.8.1081
  13. Choi, I. G and Korpela, S. A., 1980, 'Stability of the Conduction Regime of Natural Convection in a Tall Vertical Annulus,' J. Fluid Mech, Vol. 99, pp. 725-738 https://doi.org/10.1017/S0022112080000869