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Nomenclature Pr : Prandtl number, v/a
A : Aspect ratio, H/L ¥ : Pressure
g : Gravitational acceleration Q : Overall rate of heat transfer
Gr, :Grashof number based on L, g8L¥(Tw— Re; : Reynolds number, UsL/v
T/ #  : Dimensional time
Grz : Grashof number based on H, gB8H3(Tw— T : Temperature
)/ u’,v’ : Dimensional velocity components in (x/,
H  Vertical depth of a rectangular cavity ") coordinates or velocity fluctuations
Y : Heat equivalent of mechanical work U, V : Mean velocity components in the external
L : Horizontal width of a rectangular cavity boundary layer
x',y' : Cartersian coordinates, dimensional

: Computational coordinates

: Mesh size in the X-direction
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Subscripts
h : Hot
f : Freestream
w : Interface wall

Superscripts
: Ttrbulent
quantity

fluctuation or dimensional

*

: Stagnation

1. Introduction

Coupling of natural convection to forced
convection heat transfer through a diathermal
partition is a common occurence in our tech-
nical environment. The solar energy collector
devices, heat exchangers and house window
panes are just a few examples among the
many important applications. In the present
paper, a model problem is constructed to study
one of such conjugate heat transfer applicat-
ions: natural convection in a rectangular cavity
coupled with an external turbulent boundary
layer. Heat transfer from a double window
pane in a cold windy day could be envisioned
by this problem.

Mathematically, such a problem poses trem-

endous difficulty due to the many parameters
involved, nonlinearity, unknown thermal con-
dition at the interface, and the different heat
transfer modes in the internal and external
fluids. Nevertheless, an approximate solution
to such a conjugate heat transfer is accessible
by means of numerical methods geared for the
high speed digital computer. Matching the
cavity flow with the external boundary layer
can be achieved through the requirement of
heat flux continuity at the partition, whose
thickness is assumed infinitely thin for simp-
licity.

Rectangular cavity problem has received
intensive attention in the literature. When a
layer of fluid is heated uniformly from below,
cellular convection is generated, When the
Grashof number is raised above a certain crit-
ical value, the motion which remains laminar
and steady for a large of Grashof number
turns into unsteady and turbulent convection.
This cavity flow has been studied by many
authors after Benard-®, Deardorff* used
finite difference techniques to approximately
integrate the Navier-Stokes equations. Length-
to-height ratios 1 and 2, and Rayleigh numbers
greater than 6,75x10° were considered. In
most cases he obtained a nearly steady solu-
tion. Fromm<® investigated a fluid layer heated
from below for the Rayleigh number ranging
up to 10%. Other numerical investigation was
made by Kiiblbeck ef. @l., They have cons-
tructed a two dimensional, time dependent
numerical method for the laminar free conve-
ction in a closed cavity. More recently, heat
loss in the inclined rectangular cavity has
recieved considerable attention by designers
of solar collector~%,

The convection-to-convection conjugate heat
transfer as the present problem has been little
considered in the literature. Lock and Ko9?
have performed a numerical study on the
problem of two reservoirs in different temp-
erature, seperated by a vertical flat plate with
a piece of diathermal window in the middle.
The coupled buoyant boundary layers develo-
ping along the both sides of the partition, one
in opposite direction to the other, are solved
numerically by an iterative process. In the
present paper, the thermal energy delivered
by the Navier-Stokes flow in the cavity is
taken away on the top by an external forced
convection.
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2. Cavity Flow

We consider a closed two dimensional cavity
of length L and height H which contains a
Newtonian fluid; see Fig. 1. The vertical side
walls are insulated and the bottom is held at
a uniform temperature T The top is exposed
externally to a forced convection whose free
stream velocity and temperature are U; and
T+(<Ts), respectively. The hydraulic boun-
dary layer has leading distance D ahead of the

thermal boundary layer.
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Fig. 1 Externally blown rectangular cavity

2.1. Governing Equations

The problem under consideration is assumed
two dimensional, steady and laminar, Due to
the intractability of the full Navier-Stokes
equations for the buoyant viscous flow, we-
adopt the Boussinesq approximation as usual.
We denote the kinematic viscosity, density,
thermal diffusivity and thermal expansion co-
efficient, all referred to some constant temp-
erature in the flow system, as v, p, @ and G,
respectively. Nondimensional variables are int-

roduced as follows:

Length x=x'/H, y=y'/H €))

’

velocity u= u

gﬁHa(T};— T;)/VL (2>
p= v
gBH¥Tw—T5)/vL
_T-Ts
temperature 8 = €))
time _ tgBH*(TWw—Ty) 0
vL
o' ou
.. ox ay
vorticity C= e BT, =TH/’LH Q)

Then, the governing equations becomes non-

dimensionally
Gr AZ(ac +ugC 6C)
=Al72C+—— 6
GrgPrA( x 20 +v—a——>—172¢9 6
{=~7* 8
where, U= gf , v=—%f_

The boundary conditions are, in a steady state,

9=0, 2 — at x=0, 1/4, 0<y<1

=0, g—fzo at y=0,1, 0<x<1/A
gfc at x=0,1/4, 0<y<1 (9)
=1 at y=0, 0<x<1/A
f=f(x) at y=1, 0<x<1/A

It is noted that the function f(x) is unknown
a priori, subject to the condition f(0)=0 and
0<f(x)<1. Although the characteristic velo-
cily scaling might at first appear to be an
arbitrary choice, it is consistent with the phy-
sical nature of the buoyancy-driven cavity flow
as was justified by Cormack ef. al.9®.

2. 2. Numerical Formulation

Before performing the finite difference app-
roximation, we make coordinate stretching in
y-direction to cluster more mesh points toward
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the horizontal interface partition. This is nec-
essary to accurately account for the sharp
gradients of the flow properties in this region.
We choose the transformation relations X=Ax
in the x-direction, and in the y-direction

n(Zey)
Y, e)=ta—<—f;i 10
tan<?a)
Here, the deformation parameter ¢ is determ-
ined from the ratio of heighty to width of
the cavity.

The governing equations and boundary con-
ditions are now cast to the finite difference
form. The successive line over relaxation me-
thod is used to solve the resultant finite diff-
erence equtions. In this approach, the governing
equations are discretized by basically using a
central differencing technique. The nonlinear
convective terms cause main difficulty in ach-
ieving numerical stability. It can be overcome
by using the second upwind differencing scheme
as tried by Lilly®®,

(825 )i0s= 1t |42 s,

+ (ur+ || —ttr+ tuz| v, ;

— Qo uDvisy, s} /(24X) (1)
p=Uis1,i+%:i)/ 2,
uL:(ui,i+ui-lyi>/2
The second-order derivatives in the diffusion

Sample demonstration is

where,

term and the non-convective first-order deriv-
ative term, which are a consequence of the
coordinate transformation as well as the buo-
yancy term, are approximated by the centered
space approximation. Substituting these appr-
oximations into the transformed governing
equtions, one obtains the tridiagonal matrix
systems. We solve these systems by Thomas
algorithm.

3. Turbulent Boundary Layer

The two-dimensional turbulent steady forced
convection over a flat plate is mathematically
governed by the time-averaged continuity, mo-
There exist
excellent numerical methods as given by Pata-

mentum and energy equations.

nkar and Spalding®”, and Crawford and

Kays“?, The latter authors write the gover-
ning equations as
oU | oV
T3 +W_O (13)
U + VaU_l_ L(.@E
o 0y \oy
— o'’ ) (14)
31 ol* _ 1 o (k ol
=t e o
—ppe i 0 (U2
V7 ay(z)) (15)

where I* is the stagnation enthalpy of the
fluid defined by I*=I:4-U?/2J, and [ is the

static entalphy. In the momentum equation,

the turbulent shear stress —#’yv’ is modeled
using the eddy diffusivity e, defined by
— oU _ u oU
—u'V =¢n =0 1
% " (16)

where u. is the turbulent viscosity.

In the energy equation, the term —7*¢’ is
a correlation involving the fluctuation of the
stagnation enthalpy and the cross-stream vel-
ocity, and is approximated as
—v +U(—=uv") an
where 7’ is the fluctuation of the static enth-

——i*'v'z

alpy. The turbulent heat flux —#'¢’ is mod-
eled using the eddy diffusivity for heat, e,
defined by
e L=(BL) L g
where &, is the turbulent conductivity.
For the boundary layer in the present problem
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consisting of a wall and a freestream, the

kinematic boundary conditions are given by
Ulx, 0)=V(x,0)=0 19
U.T Uz, »)=Us

The thermal boundary conditions are

in0===2 a]—*}gj—’o—%qw(x) (20)

lim I*(x, y)=1Is*

Based upon this formulation, a computer
Code STAN 5 was written by Crawford and
Kays in 1975, which was utilized in the present

study.

4. Solution Methodology

The temperature distribution or heat flux
along the interfacing flat plate is initially
unknown. There, we impose the heat flux
continuity condition given by

§-4( ) ax={ k()i
21

where subscripts 1 and 2 denote lower and
upper surfaces of the interfacing wall, respec-

tively.

In this step, an assumption is made, for sim-
plicity, that the partitioning wall is infinitely
thin. Then, the equation (21) can be localized

as
(37)..=(F%)... (22)

The thermal matching between the two con-
vective systems was achieved by an iterative
process. The procedure begins by solving the
natural convection problem with an appropriate
initial guess on the temperature distribution in
the normal direction along the same surface.
The temperature gradient along the interfacing
surface is then obtained from this solution,
which is used, in turn, as the Neumann boun-

dary condition for the external boundary layer.
The turbulent boundary layer solution now
yields the temperature distribution at the inte-
rfacing surface. This is used again for the start
of a new iteration cycle. When the computed
values from two adjacent iteration cycles are
close enough, i.e., up to 107° for all cases, we
terminate the iteration loop.

5. Results and Discussions

The heat transfer quantity of prime interest
in the present problem is the overall rate of
heat transfer through the cavity from the bottom
to the partitioning wall. The overall Nusselt
number is defined by

N“:/e(Tf?——T,):S:(“giy)de 23

Whereas the local Nusselt number is given by

_ nAX (96
Nup=Lo2% — (-37> X8, (24)

In the rectangular cauity region, we will
present the temperature distribution along the
interface wall as well as the contours of cons-
tant temperature, stream function, and vorticity
in the cavity. We fixed the Prandtl number at
the value of the air, 0.708, while the Grashof
number was varied to four different values,
which were all in the range of laminar natural
convection. In addition, we considered several
different values of aspect ratio to study the
geometrical influence on the cavity heat transfer.
The Reynolds number in the external flow,
defined by Res=U;L/v, was varied in the
range from 6.4x10* to 5.1x10°. Here, we
have taken the leading distance D of the hyd-
raulic boundary layer as, say, three times of
the width of the rectangular cavity. For the
purpose of specific numbering, we selected D=
0.3m, for convinience. In this case, the hydr-
aulic boundary layer above the cavity becomes
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turbulent.

To estabilish the overall validity of the pre-
sent computaion in the cavity region, we carried
out sample calculations. The test problem is a
rectangular cavity with bottom and upper walls
insulated and side walls differentially heated,
which was treated previously by Cormack ef.
al. 1%, In Fig. 2, ‘results are presented in the

form of streamlines, isotherms and vorticity

contours. As observed, these results offer good
agreement between the two sets of data. We now
present the computational results for the title
problems hereafter.

For aspect ratio A=1, variation is made in
the parameter Gr;, the Grashof number. In
Figs. 3 (1) and 3 (2), as Grashof number is
increased from 2x10* to as high as 10%, the

cavity vortex is remarkably devided into twin

Fig. 2 Results of test-calculation (Gr.=2x10% Pr=0.733, A=1)
Left  : streamlines (A=3.92X107¢, B=2.62X10"% C=1.31X10"%)
Middle : isotherms (A4=0.167, B=0.333, D=0,667, £=0.833)

Right : vorticit contours (A=—1.41 X10°2, B=—5.77x10"% C=2.55X10"%)
: Present,«ee-e : Cormack et. al.*®
' /_‘ /]
AW P

(a) Streamlines

(b) Isotherms

(c} Vorticity contour

Fig. 3(1) Externally-blown rectangular cavity (Gr.=2x10% Re,=6.4x10% A=1)

qe

(a) Streamlines

(b) Isotherms

(c) Vorticity contour

Fig. 8(2) Externally-blown rectangular cavity (Gr.=10%, 4A=1, Re,=6.4X10%)
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cells, one on the top of the other. Multiple
cells have been known to play an important
role in transferring large amount of heat flux
through the cavity for the given range of Gra-
shof number before the convection is turned
into a violent stage. From the vorticity contour
distribution in Fig. 3(1),
viscous friction is large near the center of each

we note that the

side wall, and convection is dominant in the
core region.

A rectangular cavity with aspect ratic A=
0.5 is considered - next. Figure 4(1) represents
a cavity flow without the external boundary
layer on the top wall, while Fig. 4(2) corres-
ponds to the same case but with external blo-
wing at Re;=6.4x10% It is evident that the
pattern of convection in the cavity is completely
changed for a fixed Grashof number -depending

on the existence of the external blowing: the-

single cell in th cavity is multiplied as the

{a} Streamlines

———

.(c) v

————
orticity contour

Fig. 4(1) Rectangular cavity without external

blowing (Gr.=5x10% A=0.5)

external blowing is initiated.

For a lower aspect ratio of the cavity, say
A=0.25, the cellularization of the cavity flow
becomes more distinguished as seen in Fig. 5
(1) and 5(2).
cells is clearly stronger for the higher Grashof

The tendency toward multiple

.number. In Fig. 5(1) we see two pairs of twin

vortices, and three pairs in Fig. 5(2). These

(c) Vorticity contour

Fig. 4(2) Externally-blown rectangular cavity
(Gri=5%10%, A=0.5 Re;=6.4x10%)

@0 E©E

(2) Streamlines

—

' (5
I#&
{b) Isotherms

@i@{@@“@&

{c) Vorticity contour

Fig. 5(1) Externally-blown rectangular cavity
(Gr.=10° A=0.25, Re;=6.4x10%)
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(a) StIEQTIIRES

P = P
(c} Vorticity contour

Fig. 5(2) Externally-blown rectangular cavity
(Gri=10", A=0.25, Res=6.4X10%)

multiple cells contribute to larger heat transfer
through the cavity, since the local heat transfer
along the interface wall experiences multiple
peaks, as will be shown shortly.

It is worthwhile to indicate the rotational
Without

exception, it is observed that for a rectangular

direction of the cavity vortex cells.

cavity externally blown on the top, the first
cell in the leeward direction rotates in the dire-
ction same as an open cavity externally blown.
This is the fact that heat transfer is increasing
in the leeward direction while the bottom wall
of the cavity remains constant in its temper-
ature. This seems to be one of the most peculiar
effects of external blowing on the internal cavity
flow.

the wall temperature
Higher
Reynolds number in the external flow means

Figure 6 represents
distribution along the interface wall.

lower wall temperature along the interface. The
magnitude of the local wall temperature for the
case Rer=5.1x10° is slightly less than half of
that for Res=6.3x10%

In Figs. 7(1) and 7(2), we plotted the local
Nusselt number distribution along the interface
wall for a cavity of aspect ratio A=(.25.
Higher Reynolds number in the external flow

causes higher local Nusselt number in all the
cases of Grashof number considered. For higher
Grashof number, the magnitude of local Nusselt
number is seen decreased due to the fact that,
in its definition given by Eq. (24), the deno-
minator ¢, grows faster than the numerator
(09/0Y)., as the Gry is increased.

It is noted in these figures that the magnitude
of the peak values in the local Nusselt number
increases leeward, which is possibly due to the
increased turbulence intensity in the stream
direction of the external boundary layer.

9 x102
W

0.00  0.25  0.50 0.75  1.00
x/L
Fig. 6 Tomperature distribution at the interface
wall(Gr.=10%, A=1). Reynolds number
Res: A=6.4x10* B=1.3x10% C=2.6X
10°, D=5.1x105
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Fig. 7(1) Local Nusselt number along the inte-
rface wall(Gr.=10% A=0.15). Rey-
nolds number Res : A=5.1X10% B=
2.6x10% C=1.3x10°, D=6.4x10*



526 Chul-Jin Choi and Keun-Shik Chang
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Fig. 7(2) Local Nusselt number along the int-
erface wall (Gr.=5x10°%, A=0.25).
Reynolds number Res: A=5.1X10%
B=2.6%10°,C=1.3x10°, D=6.4%x10*
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Fig. 8 Overall Nusselt number as a function of
aspect ratio (Res;=6.4Xx109)

20
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0.25 2.5 5 100
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GerlO

Fig. 9 Overall Nusselt number as a function of
Grashof number(Re,;=6.4x10%)

Finally, the overall Nusselt number for the
cavity flow is plotted in Fig. 8 and 9, It is
clear that there exists an optimal aspect ratio
for which the overall Nusselt number becomes
maximum at fixed Grashof number and Reyn-
olds number of external blowing. This value
of optimal aspect ratio is located roughly near
0.5 for Re,=6.4x10* as seen in both Fig. 8
and 9. The rather linear dependence of the
overall Nusselt number on the Grashof number
is observed in Fig. 9 for all the aspect ratios
considered.

6. Conclusions

The results obtained from the conjugate nat-
ural-to-forced convection heat transfer suggest
following facts.

(1) The flow parameters responsible for the
detailed convection pattern in the cavity are
the Grashof number and the Reynolds number
of the external boundary layer. The wall heat
flux and the cellularity of the cavity flows are
directly influenced by them.

(2) The rotation of the cavity vortices Is
dictated by the existence of the external blow-
ing. The first cell in the leeward direction
always rotates in the direction same as an open
cavity flow externally blown.

(3) For a fixed Grashof number, an optimum
aspect ratio which maximize the overall heat
transfer rate exists.

(4) For low aspect-ratio rectangular cavity,
the number of vortex cells are increase in an
even number as the Grashof number is incre-
ased.

(5) The peak local Nusselt number at the
interface wall increases in its magnitude in the
leeward direction possibly due to the enhanced
streamwise turbulent convection in the external
boundary layer.
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