• Title/Summary/Keyword: Global existence

Search Result 310, Processing Time 0.023 seconds

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.

GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM OF A MATHEMATICAL MODEL FOR UNSTIRRED MEMBRANE REACTORS

  • Song, Yongli;Zhang, Tonghua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.383-389
    • /
    • 2017
  • This paper devotes to the study of a diffusive model for unstirred membrane reactors with maintenance energy subject to a homogeneous Neumann boundary condition. It shows that the unique constant steady state is globally asymptotically stable when it exists. This result further implies the non-existence of the non-uniform steady state solution.

GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

  • Huh, Hyungjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.811-821
    • /
    • 2013
  • We study the initial value problem of the exponential wave equation in $\math{R}^{n+1}$ for small initial data. We shows, in the case of $n=1$, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When $n{\geq}2$, a vector field method is applied to show the stability of a trivial solution ${\phi}=0$.

ON GENERALIZED FRACTIONAL INTEGRAL INEQUALITIES AND APPLICATIONS TO GLOBAL SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • FATMA SAID;BRAHIM KILANI;KHALED BOUKERRIOUA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.915-930
    • /
    • 2024
  • We obtain new fractional integral inequalities which generalize certain inequalities given in [16]. Generalized inequalities can be used to study global existence results for fractional differential equations.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

EXISTENCE OF NON-CONSTANT POSITIVE SOLUTION OF A DIFFUSIVE MODIFIED LESLIE-GOWER PREY-PREDATOR SYSTEM WITH PREY INFECTION AND BEDDINGTON DEANGELIS FUNCTIONAL RESPONSE

  • MELESE, DAWIT
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.393-407
    • /
    • 2022
  • In this paper, a diffusive predator-prey system with Beddington DeAngelis functional response and the modified Leslie-Gower type predator dynamics when a prey population is infected is considered. The predator is assumed to predate both the susceptible prey and infected prey following the Beddington-DeAngelis functional response and Holling type II functional response, respectively. The predator follows the modified Leslie-Gower predator dynamics. Both the prey, susceptible and infected, and predator are assumed to be distributed in-homogeneous in space. A reaction-diffusion equation with Neumann boundary conditions is considered to capture the dynamics of the prey and predator population. The global attractor and persistence properties of the system are studied. The priori estimates of the non-constant positive steady state of the system are obtained. The existence of non-constant positive steady state of the system is investigated by the use of Leray-Schauder Theorem. The existence of non-constant positive steady state of the system, with large diffusivity, guarantees for the occurrence of interesting Turing patterns.

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A FRACTIONAL CHEMOTAXIS SYSTEM ON THE WEAKLY COMPETITIVE CASE

  • Lei, Yuzhu;Liu, Zuhan;Zhou, Ling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1269-1297
    • /
    • 2020
  • In this paper, we consider a two-species parabolic-parabolic-elliptic chemotaxis system with weak competition and a fractional diffusion of order s ∈ (0, 2). It is proved that for s > 2p0, where p0 is a nonnegative constant depending on the system's parameters, there admits a global classical solution. Apart from this, under the circumstance of small chemotactic strengths, we arrive at the global asymptotic stability of the coexistence steady state.

Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response

  • Jiang, Zhichao;Wang, Hongtao;Wang, Hongmei
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.255-266
    • /
    • 2010
  • We consider a delayed predator-prey system with Holling II functional response. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed prey-predator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Secondly, special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are given.