DOI QR코드

DOI QR Code

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A FRACTIONAL CHEMOTAXIS SYSTEM ON THE WEAKLY COMPETITIVE CASE

  • Lei, Yuzhu (School of Mathematical Science Yangzhou University) ;
  • Liu, Zuhan (School of Mathematical Science Yangzhou University) ;
  • Zhou, Ling (School of Mathematical Science Yangzhou University)
  • Received : 2019.11.03
  • Accepted : 2020.07.17
  • Published : 2020.09.30

Abstract

In this paper, we consider a two-species parabolic-parabolic-elliptic chemotaxis system with weak competition and a fractional diffusion of order s ∈ (0, 2). It is proved that for s > 2p0, where p0 is a nonnegative constant depending on the system's parameters, there admits a global classical solution. Apart from this, under the circumstance of small chemotactic strengths, we arrive at the global asymptotic stability of the coexistence steady state.

Keywords

Acknowledgement

The work is partially supported by National Natural Science Foundation of China (11771380) and Natural Science Foundation of Jiangsu Province (BK20191436).

References

  1. Y. Ascasibar, R. Granero-Belinchon, and J. M. Moreno, An approximate treatment of gravitational collapse, Phys. D 262 (2013), 71-82. https://doi.org/10.1016/j.physd.2013.07.010
  2. N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci. 25 (2015), no. 9, 1663-1763. https://doi.org/10.1142/S021820251550044X
  3. P. Biler, T. Cieslak, G. Karch, and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, Discrete Contin. Dyn. Syst. 37 (2017), no. 4, 1841-1856. https://doi.org/10.3934/dcds.2017077
  4. P. Biler, E. E. Espejo, and I. Guerra, Blowup in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal. 12 (2013), no. 1, 89-98. https://doi.org/10.3934/cpaa.2013.12.89
  5. P. Biler and I. Guerra, Blowup and self-similar solutions for two-component drift-diffusion systems, Nonlinear Anal. 75 (2012), no. 13, 5186-5193. https://doi.org/10.1016/j.na.2012.04.035
  6. P. Biler, G. Karch, and P. Laurencot, Blowup of solutions to a diffusive aggregation model, Nonlinearity 22 (2009), no. 7, 1559-1568. https://doi.org/10.1088/0951-7715/22/7/003
  7. P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion, Math. Methods Appl. Sci. 32 (2009), no. 1, 112-126. https://doi.org/10.1002/mma.1036
  8. T. Black, J. Lankeit, and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math. 81 (2016), no. 5, 860-876. https://doi.org/10.1093/imamat/hxw036
  9. A. Blanchet, On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher, in Seminaire Laurent Schwartz-Equations aux derivees partielles et applications. Annee 2011-2012, Exp. VIII, 26 pp, Semin. Equ. Deriv. Partielles, Ecole Polytech., Palaiseau, 2013.
  10. J. Burczak and R. Granero-Belinchon, Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 369-387.
  11. J. Burczak and R. Granero-Belinchon, Critical Keller-Segel meets Burgers on $S^1$: large-time smooth solutions, Nonlinearity 29 (2016), no. 12, 3810-3836. https://doi.org/10.1088/0951-7715/29/12/3810
  12. J. Burczak and R. Granero-Belinchon, Global solutions for a supercritical drift-diffusion equation, Adv. Math. 295 (2016), 334-367. https://doi.org/10.1016/j.aim.2016.03.011
  13. J. Burczak and R. Granero-Belinchon, Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation, J. Differential Equations 263 (2017), no. 9, 6115-6142. https://doi.org/10.1016/j.jde.2017.07.007
  14. J. Burczak and R. Granero-Belinchon, Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 2, 139-164. https://doi.org/10.3934/dcdss.2020008
  15. A. Carfinkel, Y. Tintut, D. Petrasek, K. Bostrom, and L. L. Demer, Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. 101 (2004), 9247-9250. https://doi.org/10.1073/pnas.0308436101
  16. A. Cordoba and D. Cordoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511-528. https://doi.org/10.1007/s00220-004-1055-1
  17. F. Dickstein, Sharp conditions for blowup of solutions of a chemotactical model for two species in $R^2$, J. Math. Anal. Appl. 397 (2013), no. 2, 441-453. https://doi.org/10.1016/j.jmaa.2012.08.001
  18. C. Escudero, The fractional Keller-Segel model, Nonlinearity 19 (2006), no. 12, 2909-2918. https://doi.org/10.1088/0951-7715/19/12/010
  19. E. E. Espejo, A. Stevens, and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species, Differential Integral Equations 25 (2012), no. 3-4, 251-288.
  20. E. E. Espejo, A. Stevens, and J. J. L. Velazquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich) 29 (2009), no. 3, 317-338. https://doi.org/10.1524/anly.2009.1029
  21. E. E. Espejo, A. Stevens, and J. J. L. Velazquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differential Integral Equations 23 (2010), no. 5-6, 451-462.
  22. E. Espejo, K. Vilches, and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $R^2$, European J. Appl. Math. 24 (2013), no. 2, 297-313. https://doi.org/10.1017/S0956792512000411
  23. R. Granero-Belinchon, On a drift-diffusion system for semiconductor devices, Ann. Henri Poincare 17 (2016), no. 12, 3473-3498. https://doi.org/10.1007/s00023-016-0493-6
  24. R. Granero-Belinchon and R. Orive-Illera, An aggregation equation with a nonlocal flux, Nonlinear Anal. 108 (2014), 260-274. https://doi.org/10.1016/j.na.2014.05.018
  25. T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), no. 1-2, 183-217. https://doi.org/10.1007/s00285-008-0201-3
  26. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103-165.
  27. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
  28. E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol. 30 (1971), 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
  29. M. Kurokiba, Existence and blowing up for a system of the drift-diffusion equation in $R^2$, Differential Integral Equations 27 (2014), no. 5-6, 425-446. http://projecteuclid.org/euclid.die/1396558090
  30. J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations 258 (2015), no. 4, 1158-1191. https://doi.org/10.1016/j.jde.2014.10.016
  31. Y. Li, Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl. 429 (2015), no. 2, 1291-1304. https://doi.org/10.1016/j.jmaa.2015.04.052
  32. Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal. 109 (2014), 72-84. https://doi.org/10.1016/j.na.2014.05.021
  33. D. Li and J. Rodrigo, Finite-time singularities of an aggregation equation in Rn with fractional dissipation, Comm. Math. Phys. 287 (2009), no. 2, 687-703. https://doi.org/10.1007/s00220-008-0669-0
  34. D. Li and J. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. Math. 220 (2009), no. 6, 1717-1738. https://doi.org/10.1016/j.aim.2008.10.016
  35. D. Li and J. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam. 26 (2010), no. 1, 261-294. https://doi.org/10.4171/RMI/601
  36. D. Li, J. L. Rodrigo, and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam. 26 (2010), no. 1, 295-332. https://doi.org/10.4171/RMI/602
  37. V. A. Liskevich and Yu. A. Semenov, Some problems on Markov semigroups, in Schrodinger operators, Markov semigroups, wavelet analysis, operator algebras, 163-217, Math. Top., 11, Adv. Partial Differential Equations, Akademie Verlag, Berlin, 1996.
  38. J.-G. Liu and R. Yang, Propagation of chaos for large Brownian particle system with Coulomb interaction, Res. Math. Sci. 3 (2016), Paper No. 40, 33 pp. https://doi.org/10.1186/s40687-016-0086-5
  39. M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal. 46 (2014), no. 6, 3761-3781. https://doi.org/10.1137/140971853
  40. J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations 32 (2007), no. 4-6, 849-877. https://doi.org/10.1080/03605300701319003
  41. J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity 25 (2012), no. 5, 1413-1425. https://doi.org/10.1088/0951-7715/25/5/1413
  42. J. L. Vazquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear partial differential equations, 271-298, Abel Symp., 7, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25361-4_15
  43. J. L. Vazquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 4, 857-885. https://doi.org/10.3934/dcdss.2014.7.857
  44. M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl. 348 (2008), no. 2, 708-729. https://doi.org/10.1016/j.jmaa.2008.07.071
  45. M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations 35 (2010), no. 8, 1516-1537. https://doi.org/10.1080/03605300903473426
  46. G. Wolansky, Multi-components chemotactic system in the absence of confiicts, European J. Appl. Math. 13 (2002), no. 6, 641-661. https://doi.org/10.1017/S0956792501004843
  47. Q. Zhang and Y. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl. 418 (2014), no. 1, 47-63. https://doi.org/10.1016/j.jmaa.2014.03.084
  48. W. Zhang, Z. Liu, and L. Zhou, Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system, Nonlinear Anal. 189 (2019), 111624, 34 pp. https://doi.org/10.1016/j.na.2019.111624
  49. S. Zhu, Z. Liu, and L. Zhou, Decay estimates for the classical solution of Keller-Segel system with fractional Laplacian in higher dimensions, Appl. Anal. 99 (2020), no. 3, 447-461. https://doi.org/10.1080/00036811.2018.1501030