Acknowledgement
The first author is supported by National Natural Science Foundation of China under Grant No. 11971053. The second author is supported by National Natural Science Foundation of China under Grant No. 11871094.
References
- S. Alama and Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), no. 1, 89-115. https://doi.org/10.1016/0022-0396(92)90145-D
- C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in ℝN, J. Differential Equations 246 (2009), no. 3, 1288-1311. https://doi.org/10.1016/j.jde.2008.08.004
- F. Bauer, B. Hua, and J. Jost, The dual Cheeger constant and spectra of infinite graphs, Adv. Math. 251 (2014), 147-194. https://doi.org/10.1016/j.aim.2013.10.021
- F. Bauer, B. Hua, and S.-T. Yau, Sharp Davies-Gaffney-Grigor'yan lemma on graphs, Math. Ann. 368 (2017), no. 3-4, 1429-1437. https://doi.org/10.1007/s00208-017-1529-z
- T. Buhler and M. Hein, Spectral clustering based on the graph p-Laplacian, Proc. 26th Annual Int. Conf. Mach. Learning, ACM, New York, (2009), 81-88.
- D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407-435. https://doi.org/10.1080/03605309208820848
- K. C. Chang, The spectrum of the 1-Laplace operator, Commun. Contemp. Math. 11 (2009), no. 5, 865-894. https://doi.org/10.1142/S0219199709003570
- K. C. Chang, Spectrum of the 1-Laplacian and Cheeger's constant on graphs, J. Graph Theory 81 (2016), no. 2, 167-207. https://doi.org/10.1002/jgt.21871
- K. C. Chang, S. Shao, and D. Zhang, The 1-Laplacian Cheeger cut: theory and algorithms, J. Comput. Math. 33 (2015), no. 5, 443-467. https://doi.org/10.4208/jcm.1506-m2014-0164
- K. C. Chang, S. Shao, and D. Zhang, Nodal domains of eigenvectors for 1-Laplacian on graphs, Adv. Math. 308 (2017), 529-574. https://doi.org/10.1016/j.aim.2016.12.020
- F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
- Y.-S. Chung, Y.-S. Lee, and S.-Y. Chung, Extinction and positivity of the solutions of the heat equations with absorption on networks, J. Math. Anal. Appl. 380 (2011), no. 2, 642-652. https://doi.org/10.1016/j.jmaa.2011.03.006
- W. Y. Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), no. 4, 283-308. https://doi.org/10.1007/BF00282336
- Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168 (2008), no. 3, 813-858. https://doi.org/10.4007/annals.2008.168.813
- J. M. do O and Y. Yang, A quasi-linear elliptic equation with critical growth on compact Riemannian manifold without boundary, Ann. Global Anal. Geom. 38 (2010), no. 3, 317-334. https://doi.org/10.1007/s10455-010-9218-0
- H. Ge, Kazdan-Warner equation on graph in the negative case, J. Math. Anal. Appl. 453 (2017), no. 2, 1022-1027. https://doi.org/10.1016/j.jmaa.2017.04.052
- H. Ge, A p-th Yamabe equation on graph, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2219-2224. https://doi.org/10.1090/proc/13929
- H. Ge, The pth Kazdan-Warner equation on graphs, Commun. Contemp. Math. 22 (2020), no. 6, 1950052, 17 pp. https://doi.org/10.1142/S0219199719500524
- H. Ge, B. Hua, and W. Jiang, A note on Liouville type equations on graphs, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4837-4842. https://doi.org/10.1090/proc/14155
- H. Ge and W. Jiang, Yamabe equations on infinite graphs, J. Math. Anal. Appl. 460 (2018), no. 2, 885-890. https://doi.org/10.1016/j.jmaa.2017.12.020
- H. Ge and W. Jiang, Kazdan-Warner equation on infinite graphs, J. Korean Math. Soc. 55 (2018), no. 5, 1091-1101. https://doi.org/10.4134/JKMS.j170561
- H. Ge and W. Jiang, The 1-Yamabe equation on graphs, Commun. Contemp. Math. 21 (2019), no. 8, 1850040, 10 pp. https://doi.org/10.1142/S0219199718500402
- A. Grigor'yan, Y. Lin, and Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13 pp. https://doi.org/10.1007/s00526-016-1042-3
- A. Grigor'yan, Y. Lin, and Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924-4943. https://doi.org/10.1016/j.jde.2016.07.011
- A. Grigor'yan, Y. Lin, and Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), no. 7, 1311-1324. https://doi.org/10.1007/s11425-016-0422-y
- Z.-C. Han, A Kazdan-Warner type identity for the σk curvature, C. R. Math. Acad. Sci. Paris 342 (2006), no. 7, 475-478. https://doi.org/10.1016/j.crma.2006.01.023
- L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrodinger type, J. Differential Equations 112 (1994), no. 1, 53-80. https://doi.org/10.1006/jdeq.1994.1095
- B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), no. 4, 659-667.
- W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrodinger equation, Adv. Differential Equations 3 (1998), no. 3, 441-472.
- J. Li, Y. Li, and P. Liu, The Q-curvature on a 4-dimensional Riemannian manifold (M, g) with ∫M QdVg = 8π2, Adv. Math. 231 (2012), no. 3-4, 2194-2223. https://doi.org/10.1016/j.aim.2012.06.002
- D. Mugnolo, Parabolic theory of the discrete p-Laplace operator, Nonlinear Anal. 87 (2013), 33-60. https://doi.org/10.1016/j.na.2013.04.002
- R. Panda, On semilinear Neumann problems with critical growth for the n-Laplacian, Nonlinear Anal. 26 (1996), no. 8, 1347-1366. https://doi.org/10.1016/0362-546X(94)00360-T
- Y. Yang, Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal. 263 (2012), no. 7, 1894-1938. https://doi.org/10.1016/j.jfa.2012.06.019
- Y. Yang and L. Zhao, A class of Adams-Fontana type inequalities and related functionals on manifolds, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 1, 119-135. https://doi.org/10.1007/s00030-009-0043-8
- X. Zhang and Y. Chang, p-th Kazdan-Warner equation on graph in the negative case, J. Math. Anal. Appl. 466 (2018), no. 1, 400-407. https://doi.org/10.1016/j.jmaa.2018.05.081
- X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on graphs, Front. Math. China 13 (2018), no. 6, 1501-1514. https://doi.org/10.1007/s11464-018-0734-8
- X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on infinite graphs, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1421-1427. https://doi.org/10.1090/proc/14362