DOI QR코드

DOI QR Code

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Received : 2020.04.28
  • Accepted : 2020.11.12
  • Published : 2021.05.01

Abstract

Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

Keywords

Acknowledgement

The first author is supported by National Natural Science Foundation of China under Grant No. 11971053. The second author is supported by National Natural Science Foundation of China under Grant No. 11871094.

References

  1. S. Alama and Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), no. 1, 89-115. https://doi.org/10.1016/0022-0396(92)90145-D
  2. C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in ℝN, J. Differential Equations 246 (2009), no. 3, 1288-1311. https://doi.org/10.1016/j.jde.2008.08.004
  3. F. Bauer, B. Hua, and J. Jost, The dual Cheeger constant and spectra of infinite graphs, Adv. Math. 251 (2014), 147-194. https://doi.org/10.1016/j.aim.2013.10.021
  4. F. Bauer, B. Hua, and S.-T. Yau, Sharp Davies-Gaffney-Grigor'yan lemma on graphs, Math. Ann. 368 (2017), no. 3-4, 1429-1437. https://doi.org/10.1007/s00208-017-1529-z
  5. T. Buhler and M. Hein, Spectral clustering based on the graph p-Laplacian, Proc. 26th Annual Int. Conf. Mach. Learning, ACM, New York, (2009), 81-88.
  6. D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407-435. https://doi.org/10.1080/03605309208820848
  7. K. C. Chang, The spectrum of the 1-Laplace operator, Commun. Contemp. Math. 11 (2009), no. 5, 865-894. https://doi.org/10.1142/S0219199709003570
  8. K. C. Chang, Spectrum of the 1-Laplacian and Cheeger's constant on graphs, J. Graph Theory 81 (2016), no. 2, 167-207. https://doi.org/10.1002/jgt.21871
  9. K. C. Chang, S. Shao, and D. Zhang, The 1-Laplacian Cheeger cut: theory and algorithms, J. Comput. Math. 33 (2015), no. 5, 443-467. https://doi.org/10.4208/jcm.1506-m2014-0164
  10. K. C. Chang, S. Shao, and D. Zhang, Nodal domains of eigenvectors for 1-Laplacian on graphs, Adv. Math. 308 (2017), 529-574. https://doi.org/10.1016/j.aim.2016.12.020
  11. F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
  12. Y.-S. Chung, Y.-S. Lee, and S.-Y. Chung, Extinction and positivity of the solutions of the heat equations with absorption on networks, J. Math. Anal. Appl. 380 (2011), no. 2, 642-652. https://doi.org/10.1016/j.jmaa.2011.03.006
  13. W. Y. Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), no. 4, 283-308. https://doi.org/10.1007/BF00282336
  14. Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168 (2008), no. 3, 813-858. https://doi.org/10.4007/annals.2008.168.813
  15. J. M. do O and Y. Yang, A quasi-linear elliptic equation with critical growth on compact Riemannian manifold without boundary, Ann. Global Anal. Geom. 38 (2010), no. 3, 317-334. https://doi.org/10.1007/s10455-010-9218-0
  16. H. Ge, Kazdan-Warner equation on graph in the negative case, J. Math. Anal. Appl. 453 (2017), no. 2, 1022-1027. https://doi.org/10.1016/j.jmaa.2017.04.052
  17. H. Ge, A p-th Yamabe equation on graph, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2219-2224. https://doi.org/10.1090/proc/13929
  18. H. Ge, The pth Kazdan-Warner equation on graphs, Commun. Contemp. Math. 22 (2020), no. 6, 1950052, 17 pp. https://doi.org/10.1142/S0219199719500524
  19. H. Ge, B. Hua, and W. Jiang, A note on Liouville type equations on graphs, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4837-4842. https://doi.org/10.1090/proc/14155
  20. H. Ge and W. Jiang, Yamabe equations on infinite graphs, J. Math. Anal. Appl. 460 (2018), no. 2, 885-890. https://doi.org/10.1016/j.jmaa.2017.12.020
  21. H. Ge and W. Jiang, Kazdan-Warner equation on infinite graphs, J. Korean Math. Soc. 55 (2018), no. 5, 1091-1101. https://doi.org/10.4134/JKMS.j170561
  22. H. Ge and W. Jiang, The 1-Yamabe equation on graphs, Commun. Contemp. Math. 21 (2019), no. 8, 1850040, 10 pp. https://doi.org/10.1142/S0219199718500402
  23. A. Grigor'yan, Y. Lin, and Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13 pp. https://doi.org/10.1007/s00526-016-1042-3
  24. A. Grigor'yan, Y. Lin, and Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924-4943. https://doi.org/10.1016/j.jde.2016.07.011
  25. A. Grigor'yan, Y. Lin, and Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), no. 7, 1311-1324. https://doi.org/10.1007/s11425-016-0422-y
  26. Z.-C. Han, A Kazdan-Warner type identity for the σk curvature, C. R. Math. Acad. Sci. Paris 342 (2006), no. 7, 475-478. https://doi.org/10.1016/j.crma.2006.01.023
  27. L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrodinger type, J. Differential Equations 112 (1994), no. 1, 53-80. https://doi.org/10.1006/jdeq.1994.1095
  28. B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), no. 4, 659-667.
  29. W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrodinger equation, Adv. Differential Equations 3 (1998), no. 3, 441-472.
  30. J. Li, Y. Li, and P. Liu, The Q-curvature on a 4-dimensional Riemannian manifold (M, g) with ∫M QdVg = 8π2, Adv. Math. 231 (2012), no. 3-4, 2194-2223. https://doi.org/10.1016/j.aim.2012.06.002
  31. D. Mugnolo, Parabolic theory of the discrete p-Laplace operator, Nonlinear Anal. 87 (2013), 33-60. https://doi.org/10.1016/j.na.2013.04.002
  32. R. Panda, On semilinear Neumann problems with critical growth for the n-Laplacian, Nonlinear Anal. 26 (1996), no. 8, 1347-1366. https://doi.org/10.1016/0362-546X(94)00360-T
  33. Y. Yang, Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal. 263 (2012), no. 7, 1894-1938. https://doi.org/10.1016/j.jfa.2012.06.019
  34. Y. Yang and L. Zhao, A class of Adams-Fontana type inequalities and related functionals on manifolds, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 1, 119-135. https://doi.org/10.1007/s00030-009-0043-8
  35. X. Zhang and Y. Chang, p-th Kazdan-Warner equation on graph in the negative case, J. Math. Anal. Appl. 466 (2018), no. 1, 400-407. https://doi.org/10.1016/j.jmaa.2018.05.081
  36. X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on graphs, Front. Math. China 13 (2018), no. 6, 1501-1514. https://doi.org/10.1007/s11464-018-0734-8
  37. X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on infinite graphs, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1421-1427. https://doi.org/10.1090/proc/14362