DOI QR코드

DOI QR Code

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo (Faculty of Education Studies University of Khanh Hoa)
  • Received : 2020.04.25
  • Accepted : 2020.12.09
  • Published : 2021.05.01

Abstract

Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

Keywords

References

  1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214. https://doi.org/10.1007/BF02564578
  2. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. https://doi.org/10.2307/1970147
  3. J. Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720-726. https://doi.org/10.1073/pnas.38.8.720
  4. M. A. Alghamdi, M. C. Crabb, and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra. I, in Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), 217-234, London Math. Soc. Lecture Note Ser., 176, Cambridge Univ. Press, Cambridge, 1992. https://doi.org/10.1017/CBO9780511526312.020
  5. S. V. Ault and W. Singer, On the homology of elementary Abelian groups as modules over the Steenrod algebra, J. Pure Appl. Algebra 215 (2011), no. 12, 2847-2852. https://doi.org/10.1016/j.jpaa.2011.04.004
  6. J. M. Boardman, Modular representations on the homology of powers of real projective space, in Algebraic topology (Oaxtepec, 1991), 49-70, Contemp. Math., 146, Amer. Math. Soc., Providence, RI, 1993. https://doi.org/10.1090/conm/146/01215
  7. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod-p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. https://doi.org/10.1016/0040-9383(66)90024-3
  8. R. R. Bruner, L. M. Ha, and N. H. V. Hung, On the behavior of the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005), no. 2, 473-487. https://doi.org/10.1090/S0002-9947-04-03661-X
  9. T. W. Chen, Determination of $Ext^{5,*}_{\mathfrak{A}}$(ℤ/2, ℤ/2), Topol. Appl. 158 (2011), no. 5, 660-689. https://doi.org/10.1016/j.topol.2011.01.002
  10. P. H. Cho'n and L. M. Ha, Lambda algebra and the Singer transfer, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 21-23. https://doi.org/10.1016/j.crma.2010.11.008
  11. M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra II, in Algebra Topology: New trend in localization and periodicity; in Progr. Math. 136 (1996), 143-154. https://doi.org/10.1007/978-3-0348-9018-2_9
  12. M. D. Crossley, Monomial bases for H*(ℂP × ℂP) over ${\mathfrak{A}}$(p), Trans. Amer. Math. Soc. 351 (1999), no. 1, 171-192. https://doi.org/10.1090/S0002-9947-99-02060-7
  13. M. D. Crossley, ${\mathcal{A}}$(p) generators for H*(V ) and Singer's homological transfer, Math. Z. 230 (1999), no. 3, 401-411. https://doi.org/10.1007/PL00004698
  14. Nguyen H. V. Hu'ng and T. N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), no. 12, 5029-5040. https://doi.org/10.1090/S0002-9947-01-02705-2
  15. Nguyen H. V. Hu'ng and T. N. Nam, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4065-4089. https://doi.org/10.1090/S0002-9947-05-03889-4
  16. Nguyen H. V. Hu'ng and F. P. Peterson, ${\mathcal{A}}$-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4687-4728. https://doi.org/10.2307/2155059
  17. A. S. Janfada and R. M. W. Wood, The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 295-303. https://doi.org/10.1017/S0305004102006059
  18. M. Kameko, Products of projective spaces as Steenrod modules, PhD. thesis, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990, 29 pages.
  19. M. H. Le, Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Geom. Topol. Publ. 11 (2007), 101-124. https://doi.org/10.2140/gtm.2007.11.81
  20. W.-H. Lin, Ext4,*A(ℤ/2, ℤ/2) and Ext5,*A(ℤ/2, ℤ/2), Topology Appl. 155 (2008), no. 5, 459-496. https://doi.org/10.1016/j.topol.2007.11.003
  21. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Proc. Natl. Acad. Sci. USA. 46 (1960), no. 7, 978-981. https://doi.org/10.1073/pnas.46.7.978
  22. I. Madsen, On the action of the Dyer-Lashof algebra in H*(G), Pacific J. Math. 60 (1975), no. 1, 235-275. http://projecteuclid.org/euclid.pjm/1102868451 https://doi.org/10.2140/pjm.1975.60.235
  23. N. Minami, The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2325-2351. https://doi.org/10.1090/S0002-9947-99-02037-1
  24. M. F. Mothebe, Dimension result for the polynomial algebra ${\mathbb{F}}_2$[x1, . . . , xn] as a module over the Steenrod algebra, Int. J. Math. Math. Sci. 2013 (2013), Art. ID 150704, 6 pp. https://doi.org/10.1155/2013/150704
  25. M. F. Mothebe, P. Kaelo, and O. Ramatebele, Dimension formula for the polynomial algebra as a module over the Steenrod algebra in degrees less than or equal to 12, Journal of Mathematics Research 8 (2016), no. 5, 92-100. https://doi.org/10.5539/jmr.v8n5p92
  26. M. F. Mothebe and L. Uys, Some relations between admissible monomials for the polynomial algebra, Int. J. Math. Math. Sci. 2015 (2015), Art. ID 235806, 7 pp. https://doi.org/10.1155/2015/235806
  27. T. N. Nam, ${\mathcal{A}}$-generateurs generiques pour l'algebre polynomiale, Adv. Math. 186 (2004), no. 2, 334-362. https://doi.org/10.1016/j.aim.2003.08.004
  28. T. N. Nam, Transfert algebrique et action du groupe lineaire sur les puissances divisees modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1785-1837. https://doi.org/10.5802/aif.2399
  29. D. J. Pengelley and F. Williams, Global structure of the mod two symmetric algebra, H*(BO; ${\mathbb{F}}_2$), over the Steenrod algebra, Algebr. Geom. Topol. 3 (2003), 1119-1138. https://doi.org/10.2140/agt.2003.3.1119
  30. D. J. Pengelley and F. Williams, Beyond the hit problem: minimal presentations of odd-primary Steenrod modules, with application to CP(∞) and BU, Homology Homotopy Appl. 9 (2007), no. 2, 363-395. http://projecteuclid.org/euclid.hha/1201127342 https://doi.org/10.4310/HHA.2007.v9.n2.a13
  31. D. J. Pengelley and F. Williams, A new action of the Kudo-Araki-May algebra on the dual of the symmetric algebras, with applications to the hit problem, Algebr. Geom. Topol. 11 (2011), no. 3, 1767-1780. https://doi.org/10.2140/agt.2011.11.1767
  32. D. J. Pengelley and F. Williams, The hit problem for H*(BU(2); ${\mathbb{F}}_p$), Algebr. Geom. Topol. 13 (2013), no. 4, 2061-2085. https://doi.org/10.2140/agt.2013.13.2061
  33. D. J. Pengelley and F. Williams, Sparseness for the symmetric hit problem at all primes, Math. Proc. Cambridge Philos. Soc. 158, (2015), no. 2, 269-274. https://doi.org/10.1017/S0305004114000668
  34. F. P. Peterson, Generators of H*(ℝP × ℝP) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., Providence, RI, April 1987.
  35. F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. https://doi.org/10.1017/S0305004100067803
  36. D. V. Phuc, The hit problem for the polynomial algebra of five variables in degree seventeen and its application, East-West J. Math. 18 (2016), no. 1, 27-46.
  37. D. V. Phuc, The Peterson hit problem in some types of degrees and applications, PhD. thesis, Quy Nhon University, 2017.
  38. D. V. Phuc, The "hit" problem of five variables in the generic degree and its application, Topol. Appl. 282 (2020), 107321, in press. https://doi.org/10.1016/j.topol.2020.107321
  39. D. V. Phuc, ${\mathcal{A}}$-generators for the polynomial algebra of five variables in degree 5(2t - 1) + 6.2t, Commun. Korean Math. Soc. 35 (2020), no. 2, 371-399. https://doi.org/10.4134/CKMS.c190076
  40. D. V. Phuc, On Peterson's open problem and representations of the general linear groups, Preprint 2020, 61 pages, available online at http://arxiv.org/abs/1907.08768.
  41. D. V. Phuc, A note on the epimorphism of the fifth algebraic transfer, JP J. Algebra Number Theory Appl. 48 (2020), no. 2, 193-201. http://dx.doi.org/10.17654/NT048020193
  42. D. V. Phuc, A note on the non-trivial elements in the cohomology groups of the Steenrod algebra, Adv. Math. Sci. J. 10 (2021), no. 1, 367-376. https://doi.org/10.37418/amsj.10.1.36
  43. D. V. Phuc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 1035-1040. https://doi.org/10.1016/j.crma.2015.09.002
  44. D. V. Phuc and N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), no. 1, 149-162. https://doi.org/10.1007/s40306-016-0190-z
  45. S. B. Priddy, On characterizing summands in the classifying space of a group. I, Amer. J. Math. 112 (1990), no. 5, 737-748. https://doi.org/10.2307/2374805
  46. J. Repka and P. Selick, On the subalgebra of H*((RP)n; ${\mathbb{F}}_2$) annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), no. 3, 273-288. https://doi.org/10.1016/S0022-4049(96)00177-6
  47. J. Silverman and W. Singer, On the action of Steenrod squares on polynomial algebras. II, J. Pure Appl. Algebra 98 (1995), no. 1, 95-103. https://doi.org/10.1016/0022-4049(95)90027-6
  48. W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493-523. https://doi.org/10.1007/BF01221587
  49. W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 577-583. https://doi.org/10.1090/S0002-9939-1991-1045150-9
  50. W. M. Singer, Rings of symmetric functions as modules over the Steenrod algebra, Algebr. Geom. Topol. 8 (2008), no. 1, 541-562. https://doi.org/10.2140/agt.2008.8.541
  51. N. E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, NJ, 1962.
  52. N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. https://doi.org/10.1016/j.aim.2010.04.026
  53. N. Sum, On the Peterson hit problem of five variables and its applications to the fifth Singer transfer, East-West J. Math. 16 (2014), no. 1, 47-62.
  54. N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432-489. https://doi.org/10.1016/j.aim.2015.01.010
  55. N. Sum, On the determination of the Singer transfer, Vietnam Journal of Science, Technology and Engineering, 60 (2018), no. 1, 3-16. https://doi.org/10.31276/VJSTE.60(1).03, available online at https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/100.
  56. N. Sum, On a construction for the generators of the polynomial algebra as a module over the Steenrod algebra, in Algebraic topology and related topics, 265-286, Trends Math, Birkhauser/Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-5742-8_14
  57. N. Sum, The kernel of Kameko's homomorphism and the Peterson hit problem, Preprint 2019, 31 pages, available online at http://viasm.edu.vn/xuat-ban/tien-an-phamviasm/?filter=2019.
  58. N. Sum, The squaring operation and the Singer algebraic transfer, Vietnam J. Math. (2020), in press. https://doi.org/10.1007/s10013-020-00423-1
  59. M. C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64. https://doi.org/10.1007/BF01110185
  60. N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree eight, Journal of Mathematical Sciences and Applications 2 (2014), no. 2, 21-24, https://doi.org/10.12691/jmsa-2-2-2, available online at http://pubs.sciepub.com/jmsa/2/2/2/
  61. N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree 2s+1 + 2s - 5, East-West J. Math. 16 (2014), no. 1, 34-46.
  62. N. K. Tin, On Singer's conjecture for the fifth algebraic transfer, Preprint 2016, 25 pages, available online at http://arxiv.org/abs/1609.02250.
  63. N. K. Tin, The admissible monomial basis for the polynomial algebra as a module over Steenrod algebra in some degrees, JP J. Algebra Number Theory Appl. 46 (2020), no. 1, 55-68. http://dx.doi.org/10.17654/NT046010055
  64. N. K. Tin, The hit problem for the polynomial algebra as a module over Steenrod algebra, I, JP J. Algebra Number Theory Appl. 47 (2020), no. 1, 67-86. http://dx.doi.org/10.17654/NT047010067
  65. G. Walker and R. M. W. Wood, Young tableaux and the Steenrod algebra, in Proceedings of the School and Conference in Algebraic Topology, 379-397, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, 2007.
  66. G. Walker and R. M. W. Wood, Weyl modules and the mod 2 Steenrod algebra, J. Algebra 311 (2007), no. 2, 840-858. https://doi.org/10.1016/j.jalgebra.2007.01.021
  67. G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod Algebra: Volume 1, The Peterson hit problem, in London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, January 11, 2018.
  68. C. T. C. Wall, Generators and relations for the Steenrod algebra, Ann. of Math. (2) 72 (1960), 429-444. https://doi.org/10.2307/1970225
  69. J. S. P. Wang, On the cohomology of the mod - 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490. http://projecteuclid.org/euclid.ijm/1256054570 https://doi.org/10.1215/ijm/1256054570
  70. R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307-309. https://doi.org/10.1017/S0305004100067797
  71. R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. https://doi.org/10.1112/S002460939800486X
  72. H. Zare, On the relation between Dyer-Lashof algebra and the hit problems, Preprint 2016, 15 pages.