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Abstract. We consider a delayed predator-prey system with Holling II functional re-

sponse. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed

prey-predator model using the basic theorem on zeros of general transcendental function,

which was established by Cook etc.. Secondly, special attention is paid to the global ex-

istence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf

bifurcation result due to Wu , we show that the local Hopf bifurcation implies the global

Hopf bifurcation after the second critical value of delay. Finally, several numerical simu-

lations supporting the theoretical analysis are given.

1. Introduction

For a long time, the global existence of periodic solutions to the mathematical
models of population dynamics has attracted much attention due to its theoretical
and practical significance. It is well known that periodic solutions can arise through
the Hopf bifurcation in delay differential equations. However, these periodic solu-
tions bifurcating from Hopf bifurcations are generally local. Therefore, it is an
important mathematical subject to investigate if these non-constant periodic solu-
tions which are obtained through local Hopf bifurcations exist globally. Recently,
a great deal of research has been devoted to the topics. One of the methods used
in them is the ejective fixed point argument developed by Nussbaum [1], which has
been successfully used to obtain the global existence of periodic solutions bifurcat-

∗ Corresponding author.
Received June 16, 2009; accepted January 27, 2010.
2000 Mathematics Subject Classification: 34K18, 34K20, 92B20.
Key words and phrases: Time delay; Hopf bifurcation; Numerical simulations.

255



256 Zhichao Jiang, Hongtao Wang and Hongmei Wang

ing from the Hopf bifurcation by many researchers (see, e.g., [2-5]). The other is
the global Hopf bifurcation theorem due to Erbe et al. [6], which was established
using a purely topological argument. Krawcewicz et al. [7] firstly applied this global
Hopf bifurcation theorem to a neutral functional differential equation. Thereafter,
many researchers have employed it to investigate the global existence of periodic
solutions for retarded functional differential equations (see, e.g., [8-15]). We would
like to mention that, several papers have studied stability of functional equations(
see, e.g.,[16-18]).

In the present paper, we again devote our attention to the global existence of
periodic solutions to the following predator-prey system:

(1.1)

{
ẋ(t) = x(t)[r1 − a11x(t− τ)− a12y(t)

1+mx(t) ]

ẏ(t) = y(t)[−r2 +
a21x(t)
1+mx(t) − a22y(t)],

where x(t) and y(t) denote the density of prey and predator at time t, respectively.
m denotes the search rate multiplied by the handling time; r1 denotes the intrin-
sic growth rate of prey; r2 denotes the death rate of the predator; a11 denotes
the intraspecific competitions rate of the prey; a12 denotes the capturing rate of
the predator; a21

a12
is the conversion rate of nutrients into the reproduction of the

predator; a22 is the interspecies competitions rate of the prey and predator; τ is
the generation time of the prey species. In biological terms, τ, ri, aij (i, j = 1, 2)
are positive constants. The main purpose of this paper is to show that the local
Hopf bifurcation of system (1.1) implies the global Hopf bifurcation after the second
critical value of delay, by using a global Hopf bifurcation theorem in Wu [15].

This paper is organized as follows. In the next section, we shall consider the
stability and the local Hopf bifurcation of the positive equilibrium. In Section 3,
the global existence of these bifurcating periodic solutions will be considered. We
shall give some numerical simulations in Section 4.

2. Stability of the positive equilibrium and local Hopf bifurcations

It is obvious that system (1.1) has three boundary equilibria: E1(0, 0), E2(0,− r2
a22

),
E3(

r1
a11

, 0).

(P1) r1a12 − r2a11 −mr1r2 > 0 and mr1 < a11.

Proposition 2.1. If the condition (P1) holds, then system (1.1) has a unique
positive equilibrium E∗(x∗, y∗), where x∗ ∈ (0, r1

a11
).

In fact, from the second equation of system (1.1), we have

(2.1) y =
1

a22
[−r2 +

a21x

1 +mx
].

Let

(2.2) H(x) = r1 − a11x+
a12r2

a22(1 +mx)
− a12a21x

a22(1 +mx)2
.
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Hence we get that

lim
x→0

H(x) = r1 +
a12r2
a22

> 0

and

lim
x→ r1

a11

H(x) =
a12a

2
11[a11r2 − a12r1 +mr1r2]

a11a22(a11 +mr1)2
.

Furthermore, we have that H ′(x) = −a11 − a12mr2
a22(1+mx)2 − a12a21(1−mx)

a22(1+mx)3 . Unde the

condition (P1), we get that H ′(x) < 0 and limx→ r1
a11

H(x) < 0. Hence system

(1.1) has a unique positive equilibrium E∗(x∗, y∗) under the condition (P1), where
x∗ ∈ (0, r1

a11
).

By the translation u1(t) = x(t) − x∗, u2(t) = y(t) − y∗, system (1.1) is written
as

(2.3)

{
u̇1(t) = [u1(t) + x∗][r1 − a11(u1(t− τ) + x∗)− a12(u2(t)+y∗)

1+m(u1(t)+x∗) ]

u̇2(t) = [u2(t) + y∗][−r2 +
a21(u1(t)

∗
x)

1+m(u1(t)+x∗) − a22(u2(t) + y∗)].

The linearization of Eq.(2.3) at (0, 0) is

(2.4)

{
u̇1(t) =

ma12x
∗y∗

(1+mx∗)2u1(t)− a11x
∗u1(t− τ)− a12x

∗

1+mx∗u2(t)

u̇2(t) =
a21y

∗

(1+mx∗)2 − a22y
∗u2(t),

whose characteristic equation is

(2.5) λ2 + pλ+ r + (sλ+ q)e−λτ = 0,

where

p = a22y
∗ − ma12x

∗y∗

(1 +mx∗)2
, q = a11a22x

∗y∗,

r =
a12x

∗y∗[a21 −ma22y
∗ −m2a22x

∗y∗]

(1 +mx∗)3
, s = a11x

∗.

The second-degree transcendental polynomial equation (2.5) has been extensively
studied by many researchers (see, e.g., [19-20]). In particular, we introduce the
following results stated in Ruan [19] about the distributions of the roots of the
characteristic Eq. (2.5).
Let
(P2) p+ s > 0;
(P3) q + r > 0;
(P4) either s2 − p2 + 2r < 0 and r2 − q2 > 0 or (s2 − p2 + 2r)2 < 4(r2 − q2);
(P5) r2 − q2 < 0 or s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2);
(P6) r2 − q2 > 0, s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 > 4(r2 − q2).
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Lemma 2.1([19]). For Eq.(2.5), we have
(i) If (P2), (P3) and (P4) hold, then all roots of Eq.(2.5) have negative real parts
for all τ ≥ 0.
(ii) If (P2), (P3), and (P5) hold and τ = τ+j , then Eq. (2.5) has a pair of purely

imaginary roots ±iω+. When τ = τ+0 , then all roots of Eq. (2.5) except ±ω+i have
negative real parts.
(iii) If (P2), (P3), and (P6) hold and τ = τ+j (τ = τ−j , respectively), then Eq.
(2.5) has a pair of imaginary roots ±iω+ (±iω−, respectively). Furthermore, when
τ = τ+j (τ = τ−j , respectively), then all roots of Eq. (2.5) except ±iω+ (±iω−,
respectively) have negative real parts.
Here,

(2.6) ω± =

√√
2

2
{s2 − p2 + 2r ±

√
(s2 − p2 + 2r)2 − 4(r2 − q2)},

and

(2.7) τj± =
1

ω±
arccos[

q(ω2
± − r)− psω2

±
s2ω2

± + q2
] +

2jπ

ω±
, j = 0, 1, 2, · · · .

From Lemma 2.1, we easily obtain the following results about the stability and
the Hopf bifurcation of system (1.1) of the positive equilibrium E∗.

Theorem 2.1. Suppose that p + s > 0 and q + r > 0 are satisfied. From system
(1.1), we have
(i) if either s2 − p2 + 2r < 0 and r2 − q2 > 0 or (s2 − p2 + 2r)2 < 4(r2 − q2), then
the equilibrium E∗ of the system (1.1) is asymptotically stable for all τ ≥ 0;
(ii) if q− r > 0, then E∗is asymptotically stable when τ ∈ [0, τ+0 ) and unstable when
τ > τ+j . System (1.1) undergoes a Hopf bifurcation at E∗ when τ = τ+j ;

(iii) if q− r < 0, s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 > 4(r2 − q2) hold, then there
is a positive integer k, such that the equilibrium E∗ switches k times from stability
to instability to stability; that is, E∗ is asymptotically stable when

τ ∈ [0, τ+0 ) ∪ (τ−0 , τ+1 ) ∪ · · · ∪ (τ−k−1, τ
+
k )

and unstable when

τ ∈ [τ+0 , τ−0 ) ∪ [τ+1 , τ−1 ) ∪ · · · ∪ [τ+k−1, τ
−
k−1) and τ > τ+k .

Here, ω± and τ±j are defined as follows (2.6) and (2.7), respectively.

Let λj = αj(τ) + iωj(τ), j = 0, 1, 2, · · · be the root of Eq. (2.5) satisfying
αj(τ

±
j ) = 0, ωj(τ

±
j ) = ω±. Then the following transversally conditions hold:

(2.8)
d

dτ
Reλj(τ

+
j ) > 0,

d

dτ
Reλj(τ

−
j ) < 0.
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3. Global existence of periodic solutions

In this section, we study the global continuation of periodic solutions bifurcating
from the equilibrium E∗, τ+j ( j = 1, 2, · · · ) for system (1.1). Throughout this sec-
tion, we follow closely the notations in [15]. For simplification of notations, setting
zt = (xt, yt), we may rewrite systems (1.1) as the following functional differential
equation:

(3.1) ż(t) = F (zt, τ, p),

where zt(θ) = z(t + θ) ∈ C([−τ, 0], R2). It is obvious that system (3.1) has four
equilibria z̄1 = (0, 0), z̄2 = (0,− r2

a22
), z̄3 = ( r1

a11
, 0) and z∗ = E∗. Following the

work of Wu [15], we need to define

X = C([−τ, 0], R2);
Σ = CL{(z(t), τ, p) ∈ X ×R×R+; z(t+ p) = z(t)},
N = {(z̄, τ̄ , p̄);F (z̄, τ̄ , p̄) = 0}.

and let ℓ(z∗,τ+
j , 2π

ω+
) denote the connected component of (z∗, τ+j , 2π

ω+
) in Σ, where τ+j

and ω+ are defined in (2.6) and (2.7), respectively.

Lemma 3.1. If the condition (P1) holds, then all the nontrivial periodic solutions
of system (1.1) are uniformly bounded.

Proof. For periodic functions x(t) and y(t), we define

(3.2) x(ξ1) = min{x(t)}, x(η1) = max{x(t)},

y(ξ2) = min{y(t)}, y(η2) = max{y(t)}.
Let (x(t), y(t)) be a nonconstant periodic solution of system (1.1). Then we obtain{

x(t) = x(0)e
∫ t
0
[r1−a11x(s−τ)− a12y(s)

1+mx(s)
]ds

y(t) = y(0)e
∫ t
0
[−r2+

a12x(s)

1+mx(s)
−a22y(s)]ds,

which implies either x(t) ≡ 0 or x(t) ̸= 0, and either y(t) ≡ 0 or y(t) ̸= 0.
(I) When x(t) > 0, y(t) > 0(or y(t) ≡ 0)from the first equation of system (1.1), we
have,

0 = r1 − a11x(η1 − τ)− a12y(η1)

1 + γ1x(η1)
≤ r1 − a11x(η1 − τ)

and
ẋ(t) < r1x(t),

which leads to

(3.3) x(η1 − τ) ≤ r1
a11

, x(t) < er1τx(t− τ).



260 Zhichao Jiang, Hongtao Wang and Hongmei Wang

It follows from (3.2) and (3.3) that

(3.4) x(η1) ≤
r1
a11

er1τ .

On the other hand, from the second equation of system (1.1), we get,

0 = −r2 +
a21x(η2)

1 +mx(η2)− a22y(η2)
− a22y(η2) ≤ −r2 +

a21r1e
r1τ

a11 +mr1er1τ
− a22y(η2).

It follows that

(3.5) y(η2) ≤ − r2
a22

+
a21r1e

r1τ

a22(a11 +mr1er1τ )
.

(II) If x(t) > 0 y(t) < 0, then from the second equation of system (1.1) we obtain

0 = −r2 +
a21x(ξ2)

1 + γ1x(ξ2)
− a22y(ξ2) > −r2 − a22y(ξ2),

which means

(3.6) y(ξ2) > − r2
a22

.

It follows together with the first equation of system (1.1) that

ẋ(t) < x(t)[r1 − a11x(t− τ) +
a12r2
a22

] <
r1a22 + r2a12

a22
x,

which induce

x(t) < x(t− τ)e{
[r1a22+r2a12]τ

a22
},

i.e.

x(t− τ) > e−{ [r1a22+r2a12]τ
a22

}x(t).

Thus, we obtain

(3.7) ẋ(t) < x(t)[
r1a22 + r2a12

a22
− a11e

−{ [r1a22+r2a12]τ
a22

}x(t)].

By comparison, (3.7) implies that x(t) is bounded above by the solution of

(3.8) u̇(t) < u(t)[
r1a22 + r2a12

a22
− a11e

−{ [r1a22+r2a12]τ
a22

}u(t)],

satisfying u(0) = x(0). Define u(t) by the solution of (3.8) starting at u(0) > 0.
Then we have

(3.9) x(η1) <
[r1a22 + r2a12]

a11a22
e{

[r1a22+r2a12]τ
a22

} + 1.
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(III) If x(t) < 0, y(t) > 0, then from the second equation of system (1.1) we obtain

0 = −r2 +
a12x(ξ2)

1 + γ1x(ξ2)
− a22y(ξ2) < −r2 − a22y(ξ2),

which leads to
y(ξ2) < − r2

a22
< 0.

Obviously, it is a contradiction. Thus, there are no nontrivial periodic solutions to
system (1.1) in this case. Use the same methods, we can obtain that there are no
nontrivial periodic solutions of system (1.1) when x(t) < 0, y(t) < 0 or y(t) ≡ 0 and
x(t) ≡ 0, y(t) ̸= 0. Therefore, suppose that (x(t), y(t)) is a nonconstant periodic
solution of system (1.1), then from (3.4) and (3.9) we have

0 < x(t) ≤ max{r1e
r1τ

a11
,
[r1a22 + r2a12]

a11a22
e{

[r1a22+r2a12]τ
a22

} + 1},

and from (3.5) and (3.6) we get

− r2
a22

< y(t) ≤ − r2
a22

+
a21r1e

r1τ

a22(a11 +mr1er1τ )
.

Therefore, Lemma 3.1 is true. 2

Lemma 3.2. When the condition (P1) holds, system (1.1) has no any nontrivial
τ -periodic solutions.

Proof. For a contradiction, suppose that system (1.1) has τ -periodic solution. Then
the following system (3.10) of ordinary differential equations has periodic solution:

(3.10)


ẋ(t) = x(t)[r1 − a11x(t)−

a12y(t)

1 +mx(t)
]

ẏ(t) = y(t)[−r2 +
a21x(t)

1 +mx(t)
− a22y(t)],

which has the same equilibria to system (1.1), i.e. z̄1 = (0, 0), z̄2 = (0,− r2
a22

),

z̄3 = (
r1
a11

, 0) and a unique positive equilibrium z∗ = E∗. Note that x-axis and y-

axis are the invariable manifold of system (3.10) and the orbits of system (3.10) do
not intersect each other. Thus, there are no solutions crossing the coordinate axes.
On the other hand, we note the fact that if system (3.10) has a periodic solution,
then there must be the equilibrium in its interior, and that z̄1, z̄2 and z̄3 are located
on the coordinate axes. Thus, we conclude that the periodic orbit of system (3.10)
must lie in the first quadrant. Using the same methods as [21-23], we have that the
positive equilibrium E∗ is global asymptotically stable in the first quadrant. Thus,
there is not periodic orbit in the first quadrant too. It is a contradiction. The above
discussion means that (3.10) has no any nontrivial periodic solutions. Therefore,
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Lemma 3.2 is confirmed. 2

Theorem 3.1. Suppose that q− r > 0 and the condition (P1) hold. Then for each
τ > τ+j (j = 1, 2, · · · ), system (1.1) has at least k − 1 periodic solutions.

Proof. It is sufficient to prove that the projection of ℓ(z∗,τj , 2π
ω+

) onto τ -space is [τ̄ ,∞)

for each j ≥ 1, where τ̄ ≤ τ+j . The characteristic matrix of (3.1) at an equilibrium

z̄ = (z̄(1), z̄(2)) ∈ R2 takes the following form:

∆(z̄, τ, p)(λ) = λId−DF (z̄, τ̄ , p̄)(eλ.Id),

i.e.

∆(z̄, τ, p)(λ)

=

(
λ− r1 + a11z̄

(1)(1 + e−λτ ) + a12z̄
(2)

(1+mz̄(1))2
a12z̄

(1)

1+mz̄(1)

− a21z̄
(2)

(1+mz̄(1))2
λ+ r2 − a21z̄

(1)

1+mz̄(1) + 2a22z̄
(2)

)
,

(3.11)

(z̄, τ̄ , p̄) is called a center if F (z̄, τ̄ , p̄) = 0 and ∆(z̄, τ̄ , p̄)( 2πp i) = 0. A center (z̄, τ̄ , p̄)

is said to be isolated if it is the only center in some neighborhood of (z̄, τ̄ , p̄). It
follows from (3.11) that

(3.12) det(∆(z̄1, τ, p)(λ)) = (λ− r1)(λ+ r2) = 0,

(3.13) det(∆(z̄2, τ, p)(λ)) = (λ− r1 −
a12r2
a22

)(λ− r2) = 0,

(3.14) det(∆(z̄3, τ, p)(λ)) = (λ+ r1e
−λτ )(λ+ r2 −

a21r1
a11 +mr1

) = 0,

Obviously, (3.12) and (3.13) have no purely imaginary roots. Thus, we conclude
that (3.1) has no the center of the form as (z̄i, τ, p) (i = 1, 2). For ω > 0, iω is a
root of (3.14) if and only if

iω + r1(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we have{
r1 cosωτ = 0,
r1 sinωτ = ω,

which implies {
ω = r1,
τk = π

2r1
+ 2kπ

r1
.

Thus, when τk = π
2r1

+ 2kπ
r1

, (3.14) has a pair of simple imaginary roots ±ir1. By
direction computation, we may obtain that

(3.15) Re{dλ
dτ

|τ=τk} =
r21

1 + r21τ
2
k

> 0.
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Therefore, we conclude that (z̄3, τk,
2π
r1
) is a isolated center stated as above. On

the other hand, from the discussion about the local Hopf bifurcation in Section
2, it is easy to verify that (z∗, τ+j , 2π

ω+
) is also a isolated center, and there exist

ε > 0, δ > 0 and a smooth curve λ : (τ j − δ, τ j + δ → C) such that det(△(λ(τ))) =

0, |λ(τ)− ω+i| < ε for all τ ∈ [τ+j − δ, τ+j + δ] and λ(τ+j ) = ω+i,
dReλ(τ+

j )

dτ > 0.

Let Ωϵ, 2π
ω+

= {(η, p) : 0 < η < ε, |p − 2π
ω+

| < ε}. It is easy to verify that on

[τ+j −δ, τ+j +δ]×∂Ωε, 2π
ω+

, ∆(z∗, τ, p)(η+ 2π
p i) = 0 if and only if η = 0, τ = τ+j , p = 2π

ω+
.

Therefore, the hypotheses (A1)− (A4) in [15] are satisfied. Moreover, if we define

H±(z∗, τ+j ,
2π

ω+
)(η, p) = ∆(z∗, τ+j ± δ, p)(η +

2π

p
i),

then we have the crossing number of isolated center (z∗, τ+j , 2π
ω+

) as follows:

γ(z∗, τ+j ,
2π

ω+
) = degB(H

−(z∗, τ+j ,
2π

ω+
),Ωϵ, 2π

ω+

)−degB(H
+(z∗, τ+j ,

2π

ω+
),Ωϵ, 2π

ω+

) = −1.

For the isolated center (z̄3, τk,
2π
r1
), the similar arguments may also show that

γ(z̄3, τ
+
j , 2π

ω+
) = −1. Thus we have that if (z̄, τ̄ , p̄) ∈ ℓ(z∗,τ+

j , 2π
ω+

), then Σ γ(z̄, τ̄ , p̄) <

0, where (z̄, τ̄ , p̄), in fact, take the form of either (z∗, τ+j , 2π
ω+

) or (z̄3, τ
+
j , 2π

ω+
),

k = 0, 1, 2, · · · . It follows together with [15, Theorem 3.3] that the connected com-
ponent ℓ(z∗,τ+

j , 2π
ω+

) through (z∗, τ+j , 2π
ω+

) in Σ is unbounded. From (2.6) and (2.7),

when j > 0, we have
2π

ω+
< τ+j .

Now we prove that the projection of ℓ(z∗,τ+
j , 2π

ω+
) onto τ -space is [τ̄ ,∞), where

τ̄ ≤ τ+j . Clearly, it follows from the proof of Lemma 3.2 that system (1.1) with
τ = 0 has no nontrivial periodic solutions. Hence, the projection of ℓ(z∗,τ+

j , 2π
ω+

) onto

τ -space is away from zero.
For a contradiction, we suppose that the projection of ℓ(z∗,τ+

j , 2π
ω+

) onto τ -space is

bounded. This means that the projection of ℓ(z∗,τ+
j , 2π

ω+
) onto τ -space is included in

a interval (0, τ∗). Noticing 2π
ω+

< τ+j and applying Lemma 3.2, we have 0 < p < τ∗,

for (z, τ, p) ∈ ℓ(z∗,τ+
j , 2π

ω+
). This implies that the projection of ℓ(z∗,τ+

j , 2π
ω+

) onto τ -

space is bounded. Then, applying Lemma 3.1 we get that the connected component
ℓ(z∗,τ+

j , 2π
ω+

) is bounded. This contradiction completes the proof. 2

4. Numerical simulations

In this section, we investigate the following system:

(4.1)

{
ẋ = x(t)[0.2− 0.5x(t− τ)− 5y(t)

1+0.5x(t) ]

ẏ = y(t)[−0.5 + 5x(t)
1+0.5x(t) − 0.5y(t)].



264 Zhichao Jiang, Hongtao Wang and Hongmei Wang

By the section 2, we can obtain E∗(0.1087, 0.0307) and the following parame-
ters: ω+ = 0.3507, ω− = 0.2867, τ+0 = 4.5504, τ−0 = 5.8492, τ+1 = 22.4659, τ−1 =
27.7643, τ+2 = 40.3813, τ−2 = 49.6794, τ+3 = 58.2967, τ−3 = 71.5946, · · · . We choose
τ = 3, τ = 5.8492, τ = 27.7643, τ = 40.3813, respectively, and (x0, y0) is initiative
value. Using Matlab Microsoft, we get the orbits of system (1.1) as Fig.4.1-4.4.
From the figures, we can see that the previous theoretical analysis results are true.
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The Fig. 4.1 shows that E∗ is asymptotically stable with the initiative (x0, y0) =

(0.1, 0.1) when τ = 3 < τ+0 . The Fig. 4.2 shows that E∗ is unstable and exists

a stable periodic orbit with the initiative (x0, y0) = (0.1, 0.1) when τ = 5.8492.

The Figs. 4.3 and 4.4 show that the periodic orbit still exists with the initiative

(x0, y0) = (0.1, 0.1) and (x0, y0) = (0.2, 0.2) when τ = 27.7643 and τ = 40.3813,

respectively.

References

[1] R. Nussbaum, Periodic solutions of some nonlinear autonomous functional equations,
Ann. Mat. Pura Appl., 10(1974), 263-306.



Global Periodic Solutions in a Delayed Predator-Prey System 265

[2] M. Baptistiini, P. Tboas, On the existence and global bifurcation of periodic solutions
to planar differential delay equations, J. Differential Equations, 127(1996), 391-425.

[3] J. Hale, S. Lunel, Introduction to Functional Differential Equations, in: Appl.Math.
Sci., vol. 99, Spring- Verlag, New York, 1993.

[4] J. Wei, Q. Huang, Global existence of periodic solutions of linard equations with time
delay, Dynam. Contin. Discrete Impuls. Systems Ser. A, 6(1999), 603-614.

[5] T. Zhao, Y. Kuang and H. Smith, Global existence of periodic solutions in a class of
delayed Gause-type predatorCprey systems, Nonlinear Anal., 28(1997), 1373-1394.

[6] L. Erbe, K. Geba, W. Krawcewicz and J. Wu, S1-degree and global Hopf bifurcations,
J. Differential Equations, 98(1992), 277-298.

[7] W. Krawcewicz, J. Wu and H. Xia, Global Hopf bifurcation theory for considering
fields and neural equations with applications to lossless transmission problems, Canad.
Appl. Math. Quart., 1(1993), 167-219.

[8] W. Krawcewicz, J. Wu, Theory and application of Hopf bifurcations in symmetric
functional differential equations, Nonlinear Anal., 35(1999), 845-870.

[9] S. Ruan, J.Wei, Periodic solutions of planar systems with two delays, Proc. Roy. Soc.
Edinburgh Sect. A, 129(1999), 1017C1032.

[10] Y. Song, J.Wei and H. Xi, Stability and bifurcation in a neural network model with
delay, Differential Equations Dynamic Systems, 9(2001), 321-339.

[11] Y. Song, J. Wei, Local and global Hopf bifurcation in a delayed hematopoiesis, Internat.
J. Bifur. Chaos Appl. Sci. Engrg., 14(2004), 3909-3919.

[12] J. Wei, Y. Li, Hopf bifurcation analysis in a delayed Nicholson Blowflies equation,
Nonlinear Anal., 60(2005), 1351-1367.

[13] J.Wei, Y. Li, Global existence of periodic solutions in a Tri-Neuron Network model
with delays, 198(2004), 106-119.

[14] X. Wen, Z. Wang, The existence of periodic solutions for some models with delay,
Nonlinear Anal. RWA, 3(2002), 567-581.

[15] J. Wu, Symmetric functional differential equations and neural networks with memory,
Trans. Amer. Math. Soc., 35(1998), 4799-4838.

[16] S. Jung, On an asymptotic behavior of exponential functional equation, Acta Mathe-
matica Sinica, English Series, 22(2006), 583-586.

[17] K. Jun, H. Kim, Stability problem for Jensen-type functional equations of cubic map-
pings, Acta Mathematica Sinica, English Series, 22(2006), 1781-1788.

[18] L. Hei, J. Wu, Existence and Stability of Positive Solutions for an Elliptic Cooperative
System, Acta Mathematica Sinica, English Series, 21(2005), 1113-1120 .

[19] S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type
predatorCprey systems with discrete delays, Quart. Appl. Math., 59(2001), 159-173.

[20] J. Wei, S. Ruan, Stability and bifurcation in a neural network model with two delays,
Phys. D, 130(1999), 225-272 .

[21] S. Nakaoka, Y. Saito and Y. Takeuchi, Stability, delay, and chaotic behavior in
a Lotka-Volterra predator-prey system, Mathematical Biosciences and Engineering,
3(2006), 173-187.



266 Zhichao Jiang, Hongtao Wang and Hongmei Wang

[22] X. He, Stability and delays in a predatorCprey system, J. Math. Anal. Appl.,
198(1996), 355-370.

[23] W. Wang, Z. Ma, Harmless delays for uniform persistence, J. Math. Anal. Appl.,
158(1991), 256-268.


