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EXISTENCE OF NON-CONSTANT POSITIVE SOLUTION OF

A DIFFUSIVE MODIFIED LESLIE-GOWER PREY-PREDATOR

SYSTEM WITH PREY INFECTION AND BEDDINGTON

DEANGELIS FUNCTIONAL RESPONSE

DAWIT MELESE

Abstract. In this paper, a diffusive predator-prey system with Bedding-

ton DeAngelis functional response and the modified Leslie-Gower type

predator dynamics when a prey population is infected is considered. The
predator is assumed to predate both the susceptible prey and infected prey

following the Beddington-DeAngelis functional response and Holling type

II functional response, respectively. The predator follows the modified
Leslie-Gower predator dynamics. Both the prey, susceptible and infected,

and predator are assumed to be distributed in-homogeneous in space. A

reaction-diffusion equation with Neumann boundary conditions is consid-
ered to capture the dynamics of the prey and predator population. The

global attractor and persistence properties of the system are studied. The
priori estimates of the non-constant positive steady state of the system are

obtained. The existence of non-constant positive steady state of the sys-

tem is investigated by the use of Leray-Schauder Theorem. The existence
of non-constant positive steady state of the system, with large diffusivity,

guarantees for the occurrence of interesting Turing patterns.
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1. Introduction

The mathematical modeling of epidemics has become a very important sub-
ject of research after the seminal model of Kermack and McKendric [1] on SIRS
systems, in which the evolution of a disease which gets transmitted upon contact
is described. Diseases have an effect on the health of any community and can
regulate the human and animal population density. Thus, it is very important
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394 Dawit Melese

both from the ecological and mathematical points of view to study ecological sys-
tems under the influence of epidemiological factors. Anderson and May [2] were
the pioneers for investigating the invasion, persistence and spread of diseases by
formulating an eco-epidemiological predator prey model.

After the seminal work of Anderson and May [2], the researchers Jana and
Kar [3], Chakraborty et al. [4], Sharma and Samanta [5], Meng et al. [6],
Maji et al. [7], Hugo and Simanjilo [8] and Melese et al. [9] have studied
a predator-prey system with infection in prey only. It was assumed that the
disease spreads among the prey population only and the disease is not genetically
inherited. The infected populations do not recover or become immune. Other
researchers [10, 11, 12, 13, 14] consider the situation where disease is transmitted
through the predator population. The authors Das et al., Gao et al. and Bera
et al. [15, 16, 17] have investigated a predator-prey model with infection in both
species.

In the real world, most species live in a habitat which is spatially hetero-
geneous. It is natural that predator and prey species moves from one place
to another place in search of prey and to avoid being eaten by predators, re-
spectively. Therefore the description of the spatial structure of the population
becomes important. Such spatial structure cab be captured by reaction diffusion
equations.

In recent times, different researchers have considered the spatio-temporal dy-
namics of a prey-predator system with infection [18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30]. Chakraborty et al. [27] have considered a diffusive predator-prey
model, where predator feeds on infected prey following type II response function
and infection spreads among the prey species through horizontal transmission.
They have studied the spatiotemporal complexity of the system. Li et al. [23]
have considered an eco-epidemiological prey-predator system with infection in
predator population and find the parameter ranges for the occurrence of Turing
patterns. Wonlyul Ko and Inkyung [20], Ahn et al. [18] and Ryu [31] have inves-
tigated the existence and non-existence of non-constant positive steady states of
a ratio-dependent prey-predator system with infection in prey. Chenglin Li [32]
have considered a ratio-dependent invasion-diffusion predator-prey system with
disease in the predator and found a sufficient conditions for the nonexistence and
existence of non-constant positive solution of the system, which implies the exis-
tence of spatiotemporal pattern formation. Melese and Feyissa [28] have studied
the stability and bifurcation analysis of a diffusive prey-predator system with
disease in prey where predator predates the susceptible prey with Beddington-
DeAngelis functional response and the infected prey following Holling type II
functional response. However, Melese and Feyissa [28] did not study the exis-
tence and non-existence of non-constant positive steady state solutions of the
system. Thus, in this paper the existence and non-existence of non-constant
positive steady state solutions of a diffusive eco-epidemiological predator-prey
system with prey infection, Beddington-DeAngelis type functional response and
the modified Leslie-Gower type predator dynamics is studied.
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The organization of this paper is as follows: in section 2.2, model formulation,
the existence of a positively invariant attracting region for the spatio-temporal
system (2), the boundedness and persistence properties of solutions to the system
(2) are discussed. Section 3 is devoted to the existence of non-constant positive
steady states of the system (2). Lastly, conclusions are given in section 4.

2. The Mathematical Model

2.1. Model Equation. Let N(X,T ) and W (X,T ) represent the total prey
population densities and the predator population density, respectively at time
T and position X in a habitat Ω ⊂ R+ and the prey population is infected with
a disease. In this paper, consider the following system due to [28]. (Please see
the detail assumption in [28]).

UT −DU∆U = r1

(
1− U

K

)
U − aUV

1 + bV
− cUW

B + U + ωW
, X ∈ Ω, T > 0,

VT −DV ∆V =
aUV

1 + bV
− AWV

1 +AhV
− dV, X ∈ Ω, T > 0,

WT −DW∆W = r2

(
1− W

s+ s2U + s3V

)
W, X ∈ Ω, T > 0,

Uν = Vν =Wν = 0, X ∈ ∂Ω, T > 0

U(X, 0) = U0(X) ≥ 0, V (X, 0) = V0(X) ≥ 0, W (X, 0) =W0(X) ≥ 0, X ∈ Ω,

(1)

where Ω ⊆ RN is a bounded region with smooth boundary ∂Ω, and all the pa-
rameters in the model, which are given as in Table 1, are assumed to be positive.
The initial functions U0(X), V0(X) and W0(X) are continuous functions on Ω.
The variables U , V and W stands for the population densities of Susceptible
prey, infected prey and predator, respectively.

Consider the following non-dimensional variables and scaling parameters.

u =
U

K
, v =

V

K
, w =

W

K
, t = r1T, x = X

√
r1
DU

, D2 =
DV

DU
, D3 =

DW

DU
,

α =
aK

r1
, κ = bK, β =

B

K
, γ =

c

r1
, θ =

AK

r1
, σ = AhK, η =

r2
r1
, s1 =

s

K
, δ =

d

r1
,

Thus, the system (1) will take the following non-dimensional form as

ut −∆u = (1− u)u− αuv

1 + κv
− γuw

β + u+ ωw
, x ∈ Ω, t > 0,

vt −D2∆v =
αuv

1 + κv
− θvw

1 + σv
− δv, x ∈ Ω, t > 0,

wt −D3∆w = η

(
1− w

s1 + s2u+ s3v

)
w, x ∈ Ω, t > 0,

uν = vν = wν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, x ∈ Ω.

(2)
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For simplicity, let us denote the reaction terms as

G1(u, v, w) := (1− u)u− αuv

1 + κv
− γuw

β + u+ ωw
,

G2(u, v, w) :=
αuv

1 + κv
− θvw

1 + σv
− δv,

G3(u, v, w) := η

(
1− w

s1 + s2u+ s3v

)
w.

Table 1. Biological Meaning of Parameters

Parameters Biological Meaning
r1 The intrinsic growth rate of susceptible prey,
K Environmental carrying capacity of prey ,
a Infection rate of prey,
b Measure of Inhibition of prey,
c Predation rate of Predator on susceptible prey,
B Saturation constant,
ω Predator interference,
A Half saturation constant,
h Handling time,
d Death rate of infected prey,
r2 Maximum per capita growth rate of the predator,
s Residual loss in predator population due to severe

scarcity of its favorite food,
s2 Conversion factor of susceptible prey into predator,
s3 Conversion factor of infected prey into predator,
DU Diffusion coefficient of susceptible prey,
DV Diffusion coefficient of infected prey,
DW Diffusion coefficient of predator.

2.2. Persistence and Boundedness. The following lemma, due to Wang and
Pang [33], is used to investigate the existence of a positively invariant attracting
region, the boundedness and persistence of solutions of the system (2).

Lemma 2.1. Let f(s) be a positive C1 function for s ≥ 0, and let d > 0, τ ≥ 0
be constants. Further, let T ∈ [0,∞) and Φ ∈ C2,1(Ω×(T,∞))∩C1,0(Ω×[T,∞))
be a positive function.

1 If Φ satisfies{
Φt − d∆Φ ≤ Φ1+τf(Φ)(ϑ− Φ), (x, t) ∈ Ω× (T,∞),

Φν = 0, (x, t) ∈ ∂Ω× [T,∞),

and the constant ϑ > 0, then lim sup
t→∞

max
Ω

Φ(., t) ≤ ϑ.
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2 If Φ satisfies{
Φt − d∆Φ ≥ Φ1+τf(Φ)(ϑ− Φ), (x, t) ∈ Ω× (T,∞),

Φν = 0, (x, t) ∈ ∂Ω× [T,∞),

and the constant ϑ > 0, then lim inf
t→∞

min
Ω

Φ(., t) ≥ ϑ.

3 If Φ satisfies{
Φt − d∆Φ ≤ Φ1+τf(Φ)(ϑ− Φ), (x, t) ∈ Ω× (T,∞),

Φν = 0, (x, t) ∈ ∂Ω× [T,∞),

and the constant ϑ ≤ 0, then lim sup
t→∞

max
Ω

Φ(., t) ≤ 0.

Theorem 2.2. All solutions of (2) initiating in R3
+ are ultimately bounded and

eventually enter into the positively invariant attracting region

Σ = [0, 1]×
[
0,
α

δκ

]
×

[
0, s1 + s2 +

αs3
δκ

]

Proof. See Theorem 4.2 in [28]. □

Theorem 2.3. The system (2) is persistent if

lu = 1− (α/κ)− (γ/ω) > 0, αlu −
(
θ
(
s1 + s2 +

αs3
δκ

)
+ δ

)
> 0.

Proof. See Theorem 4.3 in [28]. □

3. Non-constant Positive Steady States

This section is devoted to the investigation of the non-constant positive steady
states, existence and non-existence of the system (2). The non-constant positive
solutions of the system (2) are the solutions of the steady state problem

−∆u = G1(u, v, w), x ∈ Ω,

−D2∆v = G2(u, v, w), x ∈ Ω,

−D3∆w = G3(u, v, w), x ∈ Ω,

uν = vν = wν = 0, x ∈ ∂Ω.

(3)

The classical solutions of the system (3) are assumed to be in C2(Ω) ∩ C1(Ω).
For notational convenience, we shall write Λ = Λ(α, β, γ, κ, θ, σ, η, δ, s1, s2, s3) in
the sequel.

3.1. A priori estimates of non-constant positive steady state.

Theorem 3.1. For any classical solution u = (u, v, w)T of the system (3),

max
Ω

u ≤ 1, max
Ω

v ≤ α

δκ
, max

Ω
w ≤ s1 + s2 +

αs3
δκ

. (4)



398 Dawit Melese

Proof. It directly follows from equations (25), (26) and (27) of [28] and the fact
that

maxΩ u ≤ lim supt→∞ maxΩ u(., t),

maxΩ v ≤ lim supt→∞ maxΩ v(., t) and maxΩ w ≤ lim supt→∞ maxΩ w(., t).

□

Theorem 3.2. For any classical solution u = (u, v, w)T of the system (3), if

lu = 1− (α/κ)− (γ/ω) > 0, lv = αlu −
(
θ
(
s1 + s2 +

αs3
δκ

)
+ δ

)
> 0,

then

min
Ω
u ≥ 1− (α/κ)− (γ/ω) = lu,

min
Ω

v ≥
αlu −

(
θ
(
s1 + s2 +

αs3
δκ

)
+ δ

)(
θ
(
s1 + s2 +

αs3
δκ

)
+ δ

)
κ

= lv, (5)

min
Ω

w ≥ s1 + s2lu + s3lv = lw.

Proof. The proof directly follows from equations (28), (29) and (30) of [28] and
the fact that

minΩ u ≥ lim inft→∞ minΩ u(., t),

minΩ v ≥ lim inft→∞ minΩ v(., t) and minΩ w ≥ lim inft→∞ minΩ w(., t).

□

3.2. Non-existence of non-constant positive steady state. In this sub-
section, the non-existence of a non-constant positive steady state of the system
(2) is proved. But before this, let us have the following notations.

Notations:

i) 0 = µ0 < µ1 < µ2 < µ3 < ... are the eigenvalues of the operator −∆ on
Ω under the homogeneous Neumann boundary condition.

ii) E(µi) is the eigenspace corresponding to the eigenvalue µi.
iii) Xij := {c.ψij : c ∈ R3}, where {ψij} are orthonormal basis of Xi for

j = 1, 2, 3, ..., dim[Ei].

iv) X := {u = (u, v, w) ∈ [C1
(
Ω
)
]3|∂u∂ν = 0 on ∂Ω}, and so X =

∞⊕
i=0

Xi,

where

Xi =

dim[E(µi)]⊕
j=1

Xij .

We can observe that the system (2) has a unique constant positive steady
state ũ = (ũ, ṽ, w̃), where

w̃ = s1 + s2ũ+ s3ṽ, ũ =
(1 + κṽ)(δ + s1θ + (s3θ + σδ)ṽ)

α− s2θ + (ασ − s2θκ)ṽ
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and ṽ is the unique positive root of the quartic equation

A5v
5 +A4v

4 +A3v
3 +A2v

2 +A1v +A0 = 0, (6)

where the coefficients Ai, (i = 1, 2, 3, 4, 5) are given in the Appendix 4.

Theorem 3.3. Let µ1 be the smallest positive eigenvalue of the operator −∆
on Ω with homogeneous Neumann boundary condition and D∗

3 be a fixed posi-
tive constant satisfying D∗

3 ≥ η
µ1
. Then there exists a positive constant D∗ =

D∗(D2,Λ) such that the system (3) has no non-constant positive solution pro-
vided min{D2, 1} ≥ D∗ and D3 ≥ D∗

3.

Proof. Let u = (u, v,w)T be a positive solution of the system (3). Let u =
|Ω|−1

∫
Ω
udx, v = |Ω|−1

∫
Ω
vdx and w = |Ω|−1

∫
Ω
wdx. Now, we multiply the first,

second and third equations in (3) by (u−u), (v−v) and (w−w), respectively, and
integrate the system (3) over Ω by parts and then apply Green’s first identity.
Thus, we have

I ≡
∫
Ω

{
|∇u|2 +D2|∇v|2 +D3|∇w|2

}
dx,

=

∫
Ω

{
(u− u)(G1(u, v, w)−G1(u, v, w)) + (v − v)(G2(u, v, w)−G2(u, v, w))

+ (w − w)(G3(u, v, w)−G3(u, v, w))

}
dx,

=

∫
Ω

{
(u− u)2

(
1− (u+ u)− αv

1 + κv
− γw(β + ωw)

χ2

)
+ (v − v)2

(
αu

χ1
− δ − θw

χ3

)
+ (u− u)(v − v)

(
αv

1 + κv
− αu

χ1

)
+ (u− u)(w − w)

(
ηs2w

2

χ4
− γu(β + u)

χ2

)
+ (w − w)(v − v)

(
ηs3w

2

χ4
− θv

1 + σv

)
+ (w − w)2

(
η − η(w + w)

s1 + s2u+ s3v

)
,

≤
∫
Ω

{
(u− u)2 + αu(v − v)2 + |u− u||v − v|

(
αv

1 + κv
+

αu

χ1

)
+ (w − w)2η

+ |u− u||w − w|
(
ηs2w

2

χ4
+

γu(β + u)

χ2

)
+ |w − w||v − v|

(
ηs3w

2

χ4
+

θv

1 + σv

)
,

≤
∫
Ω

{
(u− u)2 + αu(v − v)2 + |u− u||v − v|

(
u+

1

κ

)
α+ (w − w)2η

+ |u− u||w − w|
(
ηs2w

2

s21
+ γ

)
+ |w − w||v − v|

(
ηs3w

2

s21
+

θ

σ

)
,

≤
∫
Ω

{
(u− u)2 + α(v − v)2 + |u− u||v − v|

(
1 +

1

κ

)
α+ (w − w)2η

+ |u− u||w − w|
(
ηs2M

2
w

s21
+ γ

)
+ |w − w||v − v|

(
ηs3M

2
w

s21
+

θ

σ

)}
dx ≡ I1,

where

χ1 = (1 + κv)(1 + κv), χ2 = (β + u+ ωw)(β + u+ ωw), χ3 = (1 + σv)(1 + σv),

χ4 = (s1 + s2u+ s3v)(s1 + s2u+ s3v), Mw = max
Ω

w.
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For the positive constants ξ1 =
(
1 + 1

κ

)
α, ξ2 =

(
ηs3M

2
w

s21
+ θ

σ

)
, ξ3 =

(
ηs2M

2
w

s21
+ γ

)
and

arbitrary positive constants ϵ1, ϵ2, ϵ3, the Young’s inequality yields

|u− u||v − v| ≤ ξ1
2ϵ1

(u− u)2 +
α1ϵ1
2

(v − v)2,

|v − v||w − w| ≤ ξ2
2ϵ2

(v − v)2 +
ξ2ϵ2
2

(w − w)2,

|u− u||w − w| ≤ ξ3
ϵ3

(u− u)2 +
ξ3ϵ3
2

(w − w)2.

Thus, we have

I ≤ I1 ≤
∫
Ω

{(
1 +

ξ1
2ϵ1

+
ξ3
ϵ3

)
(u− u)2 +

(
α+

ξ1ϵ1
2

+
ξ2
2ϵ2

)
(v − v)2

+

(
η +

ξ2ϵ2
2

+
ξ3ϵ3
2

)
(w − w)2

}
dx ≡ I2. (7)

Further, due to the Poincare inequality, we get

I ≥
∫
Ω

{
µ1(u− u)2 + µ1D2(v − v)2 + µ1D3(w − w)2

}
dx ≡ I3. (8)

From (7) and (8), it follows that

I2 ≥ I3. (9)

Since µ1D
∗
3 > η by the assumption, we can find a sufficiently small ϵ1, ϵ2, ϵ3 > 0 such

that

µ1D
∗
3 ≥ (η+ ξ2ϵ2

2
+ ξ3ϵ3

2
). LetD∗

11 := µ−1
1

(
1 + ξ1

2ϵ1
+ ξ3

ϵ3

)
, D∗

21 := µ−1
1

(
α+ ξ1ϵ1

2
+ ξ2

2ϵ2

)
and D∗ = max{D∗

11, D
∗
21}. Therefore, we conclude that u = u = constant, v = v =

constant and w = w = constant provided min{D2, 1} ≥ D∗ and D3 ≥ D∗
3 . □

3.3. Existence of non-constant positive steady state. The main aim of
this section is to discuss the existence of non-constant positive solutions to the
system (3) by using Leray-Schauder Theorem. Theorem (3.3) implies that when
the assumptions of the theorem holds then the system (3) will not have non-
constant positive solution.

Now, define X+ = {u ∈ X|u > 0, v > 0,w > 0} on Ω, B(C) = {u ∈ X|C−1 <
u, v,w < C} on Ω, where C is a positive constant in which its existence is ensured
by theorems (3.1) and (3.2). Let D = diag(1, D2, D3). Thus, the system (3) is
equivalent with {

−D∆u = G(u), x ∈ Ω,

uν = 0, x ∈ ∂Ω.
(10)

u is a positive solution of (10) if and only if

φ(u) ∆ u− (I−∆)
−1 {D−1G(u) + u} = 0 in X+,

where I is the identity map from C1(Ω) to itself and (I − ∆)−1 is the inverse
of I−∆ in X subject to Neumann boundary condition. It can be noticed that
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the Leray-Schauder degree deg(φ(.), 0, B) is well defined if φ(u) ̸= 0 for any
u ∈ ∂B(C). Direct computation gives

Duφ(ũ) = I− (I−∆)
−1 {D−1Gu(ũ) + I}.

Note that, λ is an eigenvalue of the matrix Duφ(ũ) on Xi if and only if it is
an eigenvalue of the matrix 1

1+µi

{
µiI−D−1Gu(ũ)

}
. Thus, the matrix Duφ(ũ)

is invertible if and only if 1
1+µi

{
µiI−D−1Gu(ũ)

}
is non-singular for any i ≥ 1.

Let

Ψ(µ) ∆ det
(
µI−D−1Gu(ũ)

)
, (11)

ψ(µ) ∆ det (µD−Gu(ũ)) . (12)

Then,

Ψ(µ) =
1

D2D3
ψ(µ). (13)

Note that the number of negative eigenvalues µ of Duφ(ũ) on Xi is odd if and
only if Ψ(µi, 0) < 0.

Proposition 3.4. Suppose Ψ(µi) ̸= 0; i ≥ 1. Let m(µi) be the multiplicity of

the eigenvalue µi and ρ =
∑

i≥1,Ψ(µi)<0

m(µi). Then, index(φ(.), ũ) = (−1)ρ.

The above proposition indicates that the sign of Ψ(µi) has a paramount im-
portance for calculating the value of index(φ(.), ũ).

Now,

ψ(µ) = ψ1(D3)µ
3 + ψ2(D3)µ

2 + ψ3(D3)µ− det (Gu(ũ)) , (14)

where

ψ1(D3) = D2D3, ψ2(D3) = ηD2 − (a22 + a11D2)D3,

ψ3(D3) = −η(s3a23 + a22)− η(s2a13 + a11)D2 + (−a12a21 + a11a22)D3

and

a11 = ũ

(
γw̃

(β + ũ+ ωw̃)2
− 1

)
, a12 = − αũ

(κṽ + 1)2
, a13 = − γũ(β + ũ)

(β + ũ+ ωw̃)2
,

a21 =
αṽ

κṽ + 1
, a22 = − ακũ

(κṽ + 1)2
+

θσw̃

(σṽ + 1)2
, a23 = − θṽ

σṽ + 1
.

Let µ1, µ2, µ3 be the three roots of ψ(µ) = 0. Then, µ1µ2µ3 = det (Gu(ũ)),
where

det (Gu(ũ)) = −η(a11a22 − a12a21 + s3(a11a23 − a13a21) + s2(a13a22 − a12a23)).

One can see that det (Gu(ũ)) < 0 if

a11a22 − a12a21 > 0, a11a23 − a13a21 > 0, a13a22 − a12a23 > 0. (15)
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Hence, since ψ1 > 0, one of µ1, µ2, µ3 is real and negative, and the product of
the other two is positive.

For a sufficiently large D3, i.e D3 → ∞, we have

lim
D3→∞

{
Ψ(µ)

D3

}
= µ(D2µ

2 − (a22 + a11D2)µ+ a11a22 − a12a21).

Thus, we have the following result.

Proposition 3.5. Assume that a11 > 0, a22 + a11D2 > 0, the constant positive
equilibrium point ũ exists and (15) hold. Then, there exists a positive constant

D̃ such that when D3 ≥ D̃, the three roots µ1(D3), µ2(D3), µ3(D3) of ψ(µ) = 0
are all real and satisfy

lim
D3→∞

µ1(D3) =
(a22 + a11D2)−

√
(a22 + a11D2)2 − 4D2(a11a22 − a12a21)

2D2

≡ µ̃1 > 0,

lim
D3→∞

µ2(D3) =
(a22 + a11D2) +

√
(a22 + a11D2)2 − 4D2(a11a22 − a12a21)

2D2

≡ µ̃2 > 0,

lim
D3→∞

µ3(D3) = 0.

(16)

Moreover, we have
−∞ < µ3(D3) < 0 < µ1(D3) < µ2(D3),

ψ(µ) < 0, when µ ∈ (−∞, µ3(D3)) ∪ (µ1(D3), µ2(D3)),

ψ(µ) > 0, when µ ∈ (µ3(D3), µ1(D3)) ∪ (µ2(D3),∞).

(17)

The following theorem proves the global existence of non-constant positive
solution to the system (3) for sufficiently large D3 while other parameters are
fixed.

Theorem 3.6. Assume that the parameters Λ and D2 are fixed, the constant
positive equilibrium point ũ exists, a11 > 0, a22 + a11D2 > 0 and (15) hold. Let
µ̃1 and µ̃2 be given by the limit (16). If µ̃1 ∈ (µn, µn+1), µ̃2 ∈ (µp, µp+1) for

some p ≥ n ≥ 1 and the sum ρp =

p∑
i=n+1

m(µi) is odd then there exists a positive

constant D̃21 such that, if D3 ≥ D̃21, then the system (3) admits at least one
non-constant positive solution.

Proof. From proposition (3.5), it follows that there exists a positive constant D̃

such that, when D3 ≥ D̃, (17) holds and

µ1 ∈ (µn, µn+1) , µ2 ∈ (µp, µp+1) . (18)

Now we prove that, for any D3 ≥ D̃21, the system (3) admits at least one
non-constant positive solution. Assume that the assertion is not true for some
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D3 = D̃3 ≥ D̃21. By using the homotopy invariance of the topological degree,
we can derive a contradiction in the sequel.

Fix D3 = D̃3, D
∗
3 = η

µ1
. Thus, by Theorem (3.3), we get a positive constant

D∗ = D∗(D2,Λ). Fix D̂3 ≥ D∗
3 , D̂2 ≥ max{D∗, D2}. For t ∈ [0, 1], define

D(t) = diag(1, D2(t), D3(t)) with Di(t) = tDi + (1− t)D̂i, i = 2, 3 and consider
the problem {

−D(t)∆u = G(u), x ∈ Ω,

uν = 0, x ∈ ∂Ω.
(19)

Thus, u is a non-constant positive solution of the system (3) if and only if it is
a positive solution of (19) for t = 1. Clearly, ũ is the unique constant positive
solution of (19) for any 0 ≤ t ≤ 1. For any 0 ≤ t ≤ 1, u is a positive solution of
(3) if and only if it is a solution of the following problemma

φ(t;u) ∆ u− (I−∆)
−1 {D−1(t)G(u) + u} = 0 in X+.

It is clear that φ(1;u) = φ(0;u). From theorem (3.3) it follows that φ(0;u) = 0
has only the positive solution ũ in X+. It is easy to see that

Duφ(t; ũ) = I− (I−∆)
−1 {D−1(t)Gu(ũ) + I}.

In particular,

Duφ(0; ũ) = I− (I−∆)
−1 {D̂

−1
Gu(ũ) + I},

Duφ(1; ũ) = I− (I−∆)
−1 {D−1Gu(ũ) + I} = Duφ(ũ).

where D̂ = diag(1, D̂2, D̂3).
For t = 1, by (17), (18) and (13), we have

Ψ(µ0) = Ψ(0) > 0,

Ψ(µi) > 0, 1 ≤ i ≤ n,

Ψ(µi) < 0, n+ 1 ≥ i ≤ p,

Ψ(µi+1) > 0, i ≥ p+ 1.

Hence, zero is not the eigenvalue of the matrix µiI−D−1Gu(ũ) for all i ≥ 0 and∑
i≥0,Ψ(µi)<0

m(µi) =

p∑
i

m(µi) = ρp, which is odd. Then proposition (3.4) yields

index(φ(1; .), ũ) = (−1)ρ = (−1)ρp = −1. (20)

Similarly, it is possible to prove

index(φ(0; .), ũ) = (−1)ρ = (−1)0 = 1. (21)

In view of theorems (3.1) and (3.2), there exists a positive constant C such that,
for all 0 ≤ t ≤ 1, the positive solutions of (19) satisfy C−1 < u, v,w < C and
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hence φ(t;u) ̸= 0 on ∂B(C). By the homotopy invariance of the topological
degree, we have

deg(φ(1; .), 0, B(C)) = deg(φ(0; .), 0, B(C)). (22)

Since both equations φ(1;u) = 0 and φ(0;u) = 0 have the unique positive
solution ũ in B(C), by (20) and (21), we have

deg(φ(0; .), 0, B(C)) = index(φ(0; .), ũ) = 1,

deg(φ(1; .), 0, B(C)) = index(φ(1; .), ũ) = −1.

This contradicts (22). Hence the proof is complete. □

4. Conclusion

In this paper, a diffusive predator-prey system with disease in prey, Beddington-
DeAngelis functional response and the modified Leslie-Gower type predator dy-
namics under homogeneous Neumann boundary condition was investigated. In
the context, we have shown the global attractor and persistence nature of the
system. In addition, under a certain condition the non-constant positive steady
state of the system (2) does not exist and hence pattern formation is not possi-
ble (c.f. Theorem (3.3)). On the other hand, under a suitable condition and a
sufficiently large diffusion constant ratio D3, non-constant positive steady state
of the system (2) exists as stated and proved in Theorem (3.6). As a result
interesting Turing patterns, which are induced by large diffusion coefficient ratio
D3, can occur.

From the qualitative analysis of the model, one can observe that our model
can be used to describe any dynamical interaction between prey and predator
populations with a communicable/infectious disease in the prey population. For
example, the model can be used to describe a phytoplankton-zooplankton system
where the phytoplankton population is affected with an infection disease. The
model can also be used to describe the macro and micro parasitic infections with
constant predator for the hyper-trophic plankton fish system.
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Appendix

A5 = κ
2
(δσ + θs3)(δκσ(s2ω + 1) + s3(ασω + θκ))

A4 = κ
3
(δσ(θ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + 2δ(s2ω + 1)) + θs3δ(s2ω + 2))

+ κ
2
(s3(σ(α(β − 1)θ + 6δθ + 2αω(δ + θs1)) + θs2(σω(α + 3δ) − α(γσ + θ))))

+ κ
2
(
δσ

(
σ(3δ + α(β + s1ω − 1)) − αθs

2
2ω + s2(3δσω − α(−γσ + θ + σω))

))
+ κασ

(
αδσ(s2ω + 1) + s3(2δσω + α(γσ + θ − ω(σ + θs2))) + 2θs

2
3ω

)
+ κ

3
θs3θ(2s1 − βs2 + s2) + κ

2
θs

2
3(αω + 3θ) + α

3
σ
2
s3ω

A3 = κ
3
(
δθ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + θ

2
(s1 + s2)(s1 − βs2) + δ

2
(s2ω + 1)

)
+ κ

2
(σ(α(β + s1ω − 1)(2δ + θs1) + 6δ(δ + θs1)) + θs

2
2(α(βθ − δω) + 3δσ(ω − γ)))

+ κ
2
(s3(αω(δ + θ(2s1 + s2)) + 3θ(θ(2s1 − βs2 + s2) + δ(s2ω + 2)) + αθ(β − γs2 − 1)))

+ κ
2
(s2(3δσ(−βθ + 2δω + θ + θs1ω) − α(δ(−2γσ + θ + 2σω) + θ(s1(γσ + θ − σω) − 2βσ))))

+ κ(4ασs3ω(δ + θs1) − 2αδθσs
2
2ω + β

(
2αδσ

2
+ α

2
(−σ)(σ + 2θs2) + 2αθσs3

)
+ 2αδσ

2
s1ω)

+ κ(2α
2
δσ(s2ω + 1) + 3δ

2
σ
2
(s2ω + 1) − 2αδσ

2 − 2αθσs3 + 3δθσs3(s2ω + 2) + θs
2
3(2αω + 3θ))

+ κ(α
2
σs1(γσ + θ − ω(σ + θs2)) − 2αδσs2(σ(ω − γ) + θ) + α

2
s3(2σ(γ − ω) + θ + θ(−s2)ω))

+ κ(−2αθs2s3(γσ + θ − σω)) + s3
(
2α

3
σω + α

2
σ
2
(γ − ω) + αδσ

2
ω + α

2
θσ(1 − s2ω)

)
+ α

3
βσ

2
+ α

2
δσ

2
+ α

3
σ
2
s1ω + α

2
δσ

2
s2ω + αθσs

2
3ω

A2 = κ
2
(α(δ(β + s1ω + γs2 − s2ω − 1) + θ(βs1 − γs1s2 + s1ω(s1 + s2) − s1 + 2βs2)))

+ κ(3
(
δθ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + θ

2
(s1 + s2)(s1 − βs2) + δ

2
(s2ω + 1)

)
)

+ 2κα(σ(β + s1ω − 1)(2δ + θs1) − s2(δ(−2γσ + θ + 2σω) + θ(s1(γσ + θ − σω) − 2βσ)))

+ κ(2αθs
2
2(βθ − δω) + α

2
(δ + s1(2γσ + θ − 2σω + θ(−s2)ω) − 2β(σ + θs2) + δs2ω))

+ κ(3δσ(θ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + 2δ(s2ω + 1)) + s3α
2
(γ − ω))

+ κs3(2α(δω + θ(β + 2s1ω − γs2 + s2ω − 1)) + 3θ(θ(2s1 − βs2 + s2) + δ(s2ω + 2)))

+ s3
(
ασ((β − 1)θ + 2ω(δ + θs1)) + α

2
(2σ(γ − ω) + θ + θ(−s2)ω) − αθs2(γσ + θ − σω)

)
+ s3(α

3
ω + δθσ(s2ω + 2)) − σαδ

(
−σ(β + s1ω − 1) + θs

2
2ω + s2(σ(ω − γ) + θ)

)
+ θs

2
3(αω + θ) + σα

2
(s1(γσ + θ − ω(σ + θs2)) − β(σ + 2θs2) + 2δ(s2ω + 1))

+ σ(2α
3
(β + s1ω) + δ

2
σ(s2ω + 1))

A1 = κ(2α(δ(β + s1ω + γs2 − s2ω − 1) + θ(βs1 − γs1s2 + s1ω(s1 + s2) − s1 + 2βs2)))

+ κ(δθ(s2ω(3(s1 + s2) + s3) + 6s1 − 3s2(β + γs2 − 1) + 2s3) + 3δ
2
(s2ω + 1))

+ κ(α
2
(β + s1(ω − γ)) + θ

2
(
3s

2
1 − βs2(3(s1 + s2) + s3) + 3s1s2 + 2s1s3 + s2s3

)
)

+ α(σ(β + s1ω − 1)(2δ + θs1) + s3ω(δ + θ(2s1 + s2)) + θs
2
2(βθ − δω))

+ α(−s2(δ(−2γσ + θ + 2σω) + θ(s1(γσ + θ − σω) − 2βσ))) + α
3
(β + s1ω)

+ α
2
(δ + θs1 − ω(2σs1 + θs1s2 − δs2 + s3) + γ(2σs1 + s3) − 2β(σ + θs2))

+ δσ(θ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + 2δ(s2ω + 1)) + αθs3(β − γs2 − 1)

A0 = α
2
(−β − s1(ω − γ)) + α(δ(β + s1ω + γs2 − s2ω − 1) + θ(βs1 − γs1s2)

+ δθ(s2ω(s1 + s2) + 2s1 − s2(β + γs2 − 1)) + θ
2
(s1 + s2)(s1 − βs2)

+ δ
2
(s2ω + 1) + θα(s1ω(s1 + s2) − s1 + 2βs2)
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