• Title/Summary/Keyword: Gate Length

Search Result 567, Processing Time 0.027 seconds

Fluorine Effects on NMOS Characteristics and DRAM Refresh

  • Choi, Deuk-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • We observed that in chemical vapor deposition (CVD) tungsten silicide (WSix) poly gate scheme, the gate oxide thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In DRAM cells where the channel length is extremely small, we found the thinned gate oxide is a main cause of poor retention time.

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.

Study of relation between gate overlap length and device reliability in amorphous InGaZnO thin film transistors (비정질 InGaZnO 박막트랜지스터에서 Gate overlap 길이와 소자신뢰도 관계 연구)

  • Moon, Young-Seon;Kim, Gun-Young;Jeong, Jin-Yong;Kim, Dae-Hyun;Park, Jong-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.769-772
    • /
    • 2014
  • The device reliability in amorphous InGaZnO under NBS(Negative Bias Stress) and hot carrier stress with different gate overlap has been characterized. Amorphous InGaZnO thin film transistor has been measured. and is channel $width=104{\mu}m$, $length=10{\mu}m$ with gate overlap $length=0,1,2,3{\mu}m$. The device reliability has been analyzed by I-V characteristics. From the experiment results, threshold voltage variation has been increased with increasing of the gate overlap length after hot carrier stress. Also, threshold voltage variation has been decreased and Hump Effect has been observed later with increasing of the gate overlap length after NBS.

  • PDF

Simulation of do Performance and Gate Breakdown Characteristics of MgO/GaN MOSFETs (MgO/GaN MOSFETs의 dc 특성 및 Gate Breakdown 특성 Simulation)

  • Cho, Hyeon;Kim, Jin-Gon;Gila, B.P.;Lee, K.P.;Abernathy, C.R.;Pearton, S.J.;Ren, F.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.176-176
    • /
    • 2003
  • The effects of oxide thickness and gate length of MgO/GaN metal oxide semiconductor field effect transistors (MOSFETs) on I-V, threshold voltage and breakdown voltage characteristics were examined using a drift-diffusion model. The saturation drain current scales in an inverse logarithmic fashion with MgO thickness and is < 10$^{-3}$ A.${\mu}{\textrm}{m}$$^{-1}$ for 0.5 ${\mu}{\textrm}{m}$ gate length devices with oxide thickness > 600 $\AA$ or for all 1 ${\mu}{\textrm}{m}$ gate length MOSFETs with oxide thickness in the range of >200 $\AA$. Gate breakdown voltage is > 100 V for gate length >0.5 ${\mu}{\textrm}{m}$ and MgO thickness > 600 $\AA$. The threshold voltage scales linearly with oxide thickness and is < 2 V for oxide thickness < 800 $\AA$ and gate lengths < 0.6 ${\mu}{\textrm}{m}$. The GaN MOSFET shows excellent potential for elevated temperature, high speed applications.

  • PDF

Concept of Effective Gate-Source Overlap Length in Invertedstaggered TFT Structures

  • Jung, Keum-Dong;Kim, Yoo-Chul;Kim, Byeong-Ju;Park, Byung-Gook;Shin, Hyung-Cheol;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1270-1272
    • /
    • 2007
  • Analytic equations are derived from physical quantities in the gate-source overlap region and the concept of effective gate-source overlap length is proposed. The effective overlap length can be affected by gate voltage, insulator thickness and semiconductor thickness, and the overlap length should be larger than the length to obtain maximum driving current.

  • PDF

Linearity Optimization of DG MOSFETs for RF Applications

  • Kim, Dong-Hwee;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.897-900
    • /
    • 2005
  • RF linearity of double-gate MOSFETs is investigated using accurate two-dimensional simulations. The linearity has been analyzed using the Talyor series. Transconductance is dominant nonlinear source of CMOS. It is shown that DGMOSFET linearity can be improved by a careful optimization of channel thickness, gate oxide thickness, gate length, overlap length and channel doping concentration. The minimum $P_{IP3}$ data are compared in each case. It is shown that DG-MOSFET linearity can be improved by a careful optimization of channel thickness, gate oxide thickness, gate length, overlap length and channel doping concentration..

  • PDF

Performance Optimization of LDMOS Transistor with Dual Gate Oxide for Mixed-Signal Applications

  • Baek, Ki-Ju;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.254-259
    • /
    • 2015
  • This paper reports the optimized mixed-signal performance of a high-voltage (HV) laterally double-diffused metaloxide-semiconductor (LDMOS) field-effect transistor (FET) with a dual gate oxide (DGOX). The fabricated device is based on the split-gate FET concept. In addition, the gate oxide on the source-side channel is thicker than that on the drain-side channel. The experiment results showed that the electrical characteristics are strongly dependent on the source-side channel length with a thick gate oxide. The digital and analog performances according to the source-side channel length of the DGOX LDMOS device were examined for circuit applications. The HV DGOX device with various source-side channel lengths showed reduced by maximum 37% on-resistance (RON) and 50% drain conductance (gds). Therefore, the optimized mixed-signal performance of the HV DGOX device can be obtained when the source-side channel length with a thick gate oxide is shorter than half of the channel length.

FinFET for Terabit Era

  • Choi, Yang-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A FinFET, a novel double-gate device structure is capable of scaling well into the nanoelectronics regime. High-performance CMOS FinFETs , fully depleted silicon-on-insulator (FDSOI) devices have been demonstrated down to 15 nm gate length and are relatively simple to fabricate, which can be scaled to gate length below 10 nm. In this paper, some of the key elements of these technologies are described including sub-lithographic pattering technology, raised source/drain for low series resistance, gate work-function engineering for threshold voltage adjustment as well as metal gate technology, channel roughness on carrier mobility, crystal orientation effect, reliability issues, process variation effects, and device scaling limit.

Simulation of nonoverlapped source/drain-to-gate Nano-CMOS for low leakage current (낮은 누설전류를 위한 소스/드레인-게이트 비중첩 Nano-CMOS구조 전산모사)

  • Song, Seung-Hyun;Lee, Kang-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.579-580
    • /
    • 2006
  • Simple nonoverlapped source/drain-to-gate MOSFETs to suppress GIDL (gate-induced drain leakage) is simulated with SILVACO simulation tool. Changing spacer thickness for adjusting length of Drain to Gate nonoverlapped region, this simulation observes on/off characteristic of nonoverlapped source/drain-to-gate MOSFETs. Off current is dramatically decreased with S/D to gate nonoverlapped length increasing. The result shows that maximum on/off current ratio is achieved by adjusting nonoverlapped length.

  • PDF

Effects of Offset Gate on Programing Characteristics of Triple Polysilicon Flash EEPROM Cell

  • Kim, Nam-Soo;Choe, Yeon-Wook;Kim, Yeong-Seuk
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.132-138
    • /
    • 1997
  • Electrical characteristics of split-gate flash EEPROM with triple polysilicon is investigated in terms of effects of floating gate and offset gate. In order to search for t the effects of offset gate on programming characteristics, threshold voltage and drain current are studied with variation of control gate voltage. The programming process is believed to depend on vertical and horizontal electric field as well as offset gate length. The erase and program threshold voltage are found to be almost constant with variation of control gate voltage above 12V, while endurance test indicates degradation of program threshold voltage. With increase of offset gate length, program threshold voltage becomes smaller and the drain source voltage just after program under constant control gate voltage becomes higher.

  • PDF