• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.024 seconds

A Study on an Effective Higher-Order Taylor-Galerkin Method for the Analysis of Structural Dynamics (동적 해석을 위한 효과적 고차 Taylor Galerkin법에 관한 연구)

  • 윤성기;박상훈
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.353-359
    • /
    • 1993
  • In this study, the Taylor-Galerkin method is modified to take into consideration the third order term in the Taylor series of the fundamental variable. In the Taylor-Galerkin method, after expressing the governing equation of motion in conservation form, the temporal discretization is done first and then spatial discretization follows in contrast to the conventional approaches. A predictor-corrector type algorithm has been developed previously by the same author. A new computationally efficient direct algorithm is proposed in this study. A study on convergency and accuracy of the solution is carried out. Numerical examples show that this new algorithm exhibits the same order of accuracy with less computational effort.

  • PDF

A Three-Dimensional Galerkin-FEM Model Using Similarity Transform Technique (유사변환기법을 이용한 Galerkin-FEM모델)

  • 강관수;소재귀;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.174-185
    • /
    • 1994
  • This paper presents a modal solution of linear three-dimensional hydrodynamic equations using similarity transform technique. The solution over the vertical space domain is obtained using the Galerkin method with linear shape funtions (Galerkin-FEM model). Application of similarity transform to resulting tri-diagonal matrix equations gives rise 掠 a set of uncoupled partial differential equations of which the unknowns are coefficients of mode shape vectors. The proposed method.

  • PDF

LEGENDRE MULTIWAVELET GALERKIN METHODS FOR DIFFERENTIAL EQUATIONS

  • Zhou, Xiaolin
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.267-284
    • /
    • 2014
  • The multiresolution analysis for Legendre multiwavelets are given, anti-derivatives of Legendre multiwavelets are used for the numerical solution of differential equations, a special form of multilevel augmentation method algorithm is proposed to solve the disrete linear system efficiently, convergence rate of the Galerkin methods is given and numerical examples are presented.

Longitudinal Vibration Analysis of Deploying Rods (전개하는 막대의 종진동 해석)

  • Cho, Eun-Hyoung;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.625-630
    • /
    • 2000
  • In this paper, the governing equation and the boundary conditions of deploying rods are derived by using Hamilton's principle. The Galerkin method using the comparison function of the instantaneous natural modes is adopted by which the governing equation is discretized. Based on the discretized equations, the time integration analysis is performed and the longitudinal vibrations for the deploying and the retrieving velocity are analyzed.

  • PDF

FINITE ELEMENT GALERKIN SOLUTIONS FOR THE STRONGLY DAMPED EXTENSIBLE BEAM EQUATIONS

  • Choo, S.M.;Chung, S.K.;Kannan, R.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 2002
  • Finite element Galerkin solutions for the strongly damped extensible beam equations are considered. The semidiscrete scheme and a fully discrete time Galerkin method are studied and the corresponding stability and error estimates are obtained. Ratios of numerical convergence are given.

A DISCONTINUOUS GALERKIN METHOD FOR A MODEL OF POPULATION DYNAMICS

  • Kim, Mi-Young;Yin, Y.X.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2003
  • We consider a model of population dynamics whose mortality function is unbounded. We approximate the solution of the model using a discontinuous Galerkin finite element for the age variable and a backward Euler for the time variable. We present several numerical examples. It is experimentally shown that the scheme converges at the rate of $h^{3/2}$ in the case of piecewise linear polynomial space.

ERROR ESTIMATE OF EXTRAPOLATED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.311-326
    • /
    • 2011
  • In this paper, we adopt discontinuous Galerkin methods with penalty terms namely symmetric interior penalty Galerkin methods, to solve nonlinear viscoelasticity type equations. We construct finite element spaces and define an appropriate projection of u and prove its optimal convergence. We construct extrapolated fully discrete discontinuous Galerkin approximations for the viscoelasticity type equation and prove ${\ell}^{\infty}(L^2)$ optimal error estimates in both spatial direction and temporal direction.

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF