• 제목/요약/키워드: GHG

검색결과 624건 처리시간 0.031초

전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석 (Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources)

  • 김희태;안태규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

NGN 기능 기반의 온실가스감시 서비스 시나리오 (GHG Monitoring Service Scenarios Based on NGN Functions)

  • 이숭희
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2628-2634
    • /
    • 2012
  • 온실가스(green house gas: GHG) 감시는 지구의 기후변화를 방지하기 위해 필수적인 수단이 되고 있다. 기존 연구에서 글로벌 인프라인 NGN(next generation network)을 통해 온실가스감시를 수행하기 위한 서비스 시나리오가 제시되었으나 추상적인 단계에 머무르고 있어서 실제로 NGN에 적용하는 데에는 어려움이 있다. 본 논문에서는 NGN 내에 탑재될 기능들을 중심으로 온실가스감시서비스 시나리오를 제시하여 실제 NGN에서 적용이 가능하게 하기 위한 기반을 제공한다.

철도건설단계에서의 온실가스 배출량 산정방안 연구 (A Study on the Calculation Method of GHG Emission in Railroad Construction)

  • 이재영;조수익;배준형;정우성;이철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.2353-2355
    • /
    • 2010
  • Since the efforts in transportation for counteracting Climate Change have been enhanced, it is necessary to reduce GHG emissions from railroad construction. The aim of this study was to develop the calculation method of GHG emissions at the step of railroad construction. Main emission source was the energy consumption from the used heavy equipments. Firstly, GHG inventory including equipments list, energy consumption, and work load was established with the detailed process using standard for the unit cost of construction. Also, the energy consumption of heavy equipments during track construction at A site was collected to compare with the field data. As a result, the GHG emissions between the estimated and the field were a little different, which was caused by the inaccurate field data. Therefore, it is important to manage data efficiently for the calculation of GHG emissions in the field of railroad construction.

  • PDF

비 생산플랜트에서 온실가스배출 원단위 산정에 관한 연구 : 대학교 캠퍼스를 중심으로 (Estimation of the GHG Intensity for Non-Manufacturing Plant : The Example of a University Campus)

  • 박형준;이욱
    • 조명전기설비학회논문지
    • /
    • 제26권3호
    • /
    • pp.46-52
    • /
    • 2012
  • During the past decades, energy and Green House Gas(GHG) emissions has risen as a global issue. This paper is about the energy intensity and the GHG intensity in a university campus using the weighting factor of total occupied time to the members of the university. Through this analysis, we could separately estimate GHG intensity per full-time and part-time members under the situation that the measuring data is not perfect. This analyzing procedure could be applied to other non-manufacturing institutions such as school, hospital, governmental institute, office building etc.

축산업의 에너지 소비 및 연료연소에 의한 온실가스 배출 특성 (Energy Consumption and GHG Emissions from Fuel Combustion in Korean Livestock Sector)

  • 심성희;이보혜;박태식;정경화
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.267-276
    • /
    • 2015
  • This study estimates Korea's livestock energy consumption and GHG emissions from Korean livestock sector. The results show that livestock energy consumption in 2013 is 474 thousand TOE, 19.0% of total energy consumption in agriculture sector. It is estimated that GHG emission of fuel combustion from livestock sector is 956 thousand tons of $CO_2$ equivalent while a total of 4,589 thousand tons of $CO_2$ equivalent is emitted from agriculture sector. The livestock GHG emission as a proportion of the total agriculture GHG emissions (20.8%) is higher than the livestock energy consumption as a proportion of agriculture energy consumption (19.0%). This is because coal and petroleum consumption in livestock sector as a proportion of the total livestock energy consumption is higher than that in agriculture sector.

국내 온실가스 감축의 조기행동 인정 방안 (Consideration of the Early Action in the GHG Emission Reduction)

  • 송보윤;박수미;정진도
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.209-213
    • /
    • 2011
  • Enforcement Decree of the Framework Act on Low Carbon, Green Growth for achieving the country's GHG emission reduction goal of 30% was in effect. The remarkable content of the Act is the managements of targets for GHG reduction. So, the entities that have reduced voluntarily have much interest in the recognition of 'early action'. The recognition of early action is necessary to induce the fair competence of business entities and promote the voluntary GHG reduction. The definite and concrete guidance should be prepared. The important principles for this are the environmental integrity and the additionality. Based on this, the early action activities must be restricted to the voluntary, real, permanent, quantifiable, verifiable reduction. In the early action recognition, its credit should be allocated additionally set aside from the GHG target allocation in the national total allowance. Through this, the reward for the early reduction should be realized on market mechanism. The effective period to award the early action should be addressed. This can be the period after the enactment of framework on GHG reduction in effect and before the beginning year of GHG target control. It should be set with flexibility through the collection and consultation of the sector's opinions. The appropriate allowance reserve of early action was estimated as approximately 1~1.5% by using the data from the 'Pilot GHG Emission Trading Program' operated by Ministry of Environment. Also, the concrete and detail guidance to construct the necessary infra which is used to register the related information of early action activities should be prepared.

전과정평가방법에 의한 주요 연안어업의 온실가스 배출량 정량적 분석 (A quantitative analysis of greenhouse gas emissions from the major coastal fisheries using the LCA method)

  • 김현영;양용수;황보규;이지훈
    • 수산해양기술연구
    • /
    • 제53권1호
    • /
    • pp.77-88
    • /
    • 2017
  • The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue due to Cancun Agreements Mexico in 1992 and the Kyoto protocol in 2005. Furthermore, the Korean government has a plan to reduce the GHG emissions as 5.2% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries has not been executed much. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as the first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major coastal fisheries such as coastal gillnet fishery, coastal dual purpose fishery, coastal pots fishery and coastal small scale stow net fishery. Here, we calculated the GHG emission from the fisheries using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are also calculated with consideration to the different consuming areas. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

서울시 도시공간구조와 온실가스-대기오염 통합 배출량의 통계모형분석 (Statistical Model Analysis of Urban Spatial Structures and Greenhouse Gas (GHG) - Air Pollution (AP) Integrated Emissions in Seoul)

  • 정재형;권오열
    • 한국환경과학회지
    • /
    • 제24권3호
    • /
    • pp.303-316
    • /
    • 2015
  • The relationship between urban spatial structures and GHG-AP integrated emissions was investigated by statistically analyzing those from 25 administrative districts of Seoul. Urban spatial structures, of which data were obtained from Seoul statistics yearbook, were classified into five categories of city development, residence, environment, traffic and economy. They were further classified into 10 components of local area, population, number of households, residential area, forest area, park area, registered vehicles, road area, number of businesses and total local taxes. GHG-AP integrated emissions were estimated based on IPCC(intergovernmental panel on climate change) 2006 guidelines, guideline for government greenhouse inventories, EPA AP-42(compilation of air pollutant emission factors) and preliminary studies. The result of statistical analysis indicated that GHG-AP integrated emissions were significantly correlated with urban spatial structures. The correlation analysis results showed that registered vehicles for GHG (r=0.803, p<0.01), forest area for AP (r=0.996, p<0.01), and park area for AP (r=0.889, p<0.01) were highly significant. From the factor analysis, three groups such as city and traffic categories, economy category and environment category were identified to be the governing factors controlling GHG-AP emissions. The multiple regression analysis also represented that the most influencing factors on GHG-AP emissions were categories of traffic and environment. 25 administrative districts of Seoul were clustered into six groups, of which each has similar characteristics of urban spatial structures and GHG-AP integrated emissions.

Annual Greenhouse Gas Removal Estimates of Grassland Soil in Korea

  • Lee, Sang Hack;Park, Hyung Soo;Kim, Young-Jin;Kim, Won Ho;Sung, Jung Jong
    • 한국초지조사료학회지
    • /
    • 제35권3호
    • /
    • pp.251-256
    • /
    • 2015
  • The study was conducted to determine greenhouse gas (GHG) inventories in grasslands. After 'Low Carbon Green Growth' was declared a national vision on 2008, Medium-term greenhouse gas reduction was anticipated for 30% reduction compared to Business As Usual (BAU) by 2020. To achieve the reduction targets and prepare to enforce emissions trading (2015), national GHG inventories were measured based on the 1996 Intergovernmental Panel on Climate Change Guidelines (IPCC GL). The national Inventory Report (NIR) of Korea is published every year. Grassland sector measurement was officially added in 2014. GHG removal of grassland soil was measured from 1990 to 2012. Grassland area data of Korea was used for farmland area data in the "Cadastral Statistical Annual Report (1976~2012)". Annual grassland area corresponding to the soil classification was used "Soil classification and commentary in Korea (2011)". Grassland area was divided into 'Grassland remaining Grassland' and 'Land converted to Grassland'. The accumulated variation coefficient was assumed to be the same without time series changes in grassland remaining grassland. Therefore, GHG removal of soil carbon was calculated as zero (0) in grassland remaining grassland. Since the grassland area increases constantly, the grassland soil sinks constantly . However, the land converted to grassland area continued to decrease and GHG removal of soil carbon was reduced. In 2012 (127.35Gg $CO_2$), this removal decreased by 76% compared to 1990 (535.71 Gg $CO_2$). GHG sinks are only grasslands and woodlands. The GHG removaled in grasslands was very small, accounting for 0.2% of the total. However, the study provides value by identifying grasslands as GHG sinks along with forests.

주요 근해어업의 온실가스 배출량 정량적 분석 (A quantitative analysis of greenhouse gas emissions from the major offshore fisheries)

  • 배재현;양용수;김현영;황보규;이춘우;박수봉;이지훈
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.50-61
    • /
    • 2019
  • The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue from the Paris Climate Change Accord in 2015. Furthermore, the Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries rarely carried out consistently. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is necessary as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major offshore fisheries such as offshore gillnet fishery, offshore longline fishery, offshore jigging fishery and anchovy drag net fishery. Here, we calculated the GHG emissions from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are calculated with consideration to the different consuming areas as well. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.