• 제목/요약/키워드: GCB( Gas Circuit Breakers)

검색결과 19건 처리시간 0.02초

열팽창분사원리를 이용한 25,8kV급 가스차단기의 차단특성 (Interrupting Characteristics of 25.8kV Gas Circuit Breaker Using Thermal-Expansion Principle)

  • 장기찬;신영준;박경엽;정진교;김진기;김귀식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1603-1605
    • /
    • 1994
  • Recently, Gas Circuit Breakers are rapidly replacing Vacuum Circuit Breakers in the medium voltage switchgear. This is due to the improved performance of - GCB in interrupting capability, price, weight, size etc., while the countermeasure to suppress the switching surges of VCB has not been satisfactory. Intensive research works on the GCB have been conducted in the world widely since 1980. Nowadays it is well known that the thermal expansion type GCB can provide- better performance than puffer type in the distribution power system. KERI has conducted researches in the GCB rated at 25.8kV 25kA with Jinkwang Co. using the thermal expantion principle since 1993. In this paper, the calculated results of electric and magnetic fields for the model GCB are presented and analyzed. The effect of permanent magnet used to improve the interruption capabilty at the low current level is also investigated. The design parameters for the interrupter inspected through the short-circuit tests conducted at high power laboratory of KERI.

  • PDF

초고압 $SF_6$ 가스차단기의 소전류 차단성능 해석기술 I (Evaluation Method I of the Small Current Breaking Performance for SF(sub)6-Blown High-Voltage Gas Circuit Breakers)

  • 송기동;이병운;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.331-337
    • /
    • 2001
  • With the increasing reliability of analysis schemes and the dramatically increased calculating speed, the computer simulation has become and indispensable process to predict the interruption capacity of circuit breakers. Generally, circuit breakers have to possess both the small current and large current interruption abilities and the circuit breaker designers need to evaluate its capacities to save the time and the expense. The analysis of small current and the large current interruption performances have been considered separately because the phenomena occurring in a interrupter are quite different. To analyze the dielectric recovery after large current interruption many physical phenomena such as heat transfer, convection and arc radiation, the nozzle ablation, the ionization of high temperature SF(sub)6 gas, the electric and themagnetic forces and so forth mush be considered. However, in the analysis of small current interruption performance only the cold gas flow analysis needs to be carried out because the capacitive current is to small that the influence from the current can be neglected. In this paper, an empirical equation which is obtained from a series of tests to estimate the dielectric recovery strength has been applied to a real circuit breaker. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

아크시간이 초고압 가스차단기의 차단성능에 미치는 영향 (Effect of arcing time on the interruption Performance of EHV class GCB)

  • 박경엽;신영준;송기동;정진교;송원표;권기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.161-163
    • /
    • 1998
  • The interruption performance of EHV class gas circuit breakers critically depends on the flow conditions inside interrupter and the external circuit conditions. In case of puffer type gas circuit breakers the flow conditons are significantly influenced by arcing time. In this paper the calculated results of RRRV and pressure rise at current zero with varying arcing time are presented and the effect of arcing time on the thermal interruption performance of EHV class gas circuit breakers is analyzed.

  • PDF

초고압 $SF_6$가스차단기의 소전류 차단성능 해석기술 II (Evaluation Method II of the Small Current Breaking Performance of SF$_6$-Blown High-Voltage Gas Circuit Breakers)

  • 송기동;이병윤;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.384-391
    • /
    • 2001
  • The insulation strength between contacts after current interruption to the transient recovery voltage i.e., the dielectric recovery strength should be estimated for the evaluation of the small capacitive current interruption capability. Many authors have used theoretical and semi-experimental approaches to evaluate the transient breakdown voltage after the current interruption. Moreover, an empirical equation, which is obtained from a series of tests, has been used to estimated the dielectric recovery strength. Un this paper, the theoretical method which is generated from the streamer theory has been applied to real circuit breakers in order to evaluated the interruption capability. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발 (Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration)

  • 이종철;안희섭;오일성;최종웅
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권5호
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

고속도 개극 시의 복합소호 가스차단기의 차단특성 (Interruption Capability of Hybrid Type GCB with High Opening Speed)

  • 송기동;정진교;박경업
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.408-413
    • /
    • 2005
  • This paper presents the basic design technology on the hybrid type GCB(gas circuit breakers) through the test results. The three type hybrid interrupters according to the arrangement of the thermal expansion chamber and the puffer cylinder(they are called 'serial type', ' parallel/exchanged type ,' and ' parallel/separated type ' respectively in this work) were designed and manufactured and then the tests of operating characteristics and interrupting were performed using a simplified synthetic test facility. The interruption capability with the type and the opening speed and the pressure rise which is required to interrupt were examined. The change of pressure rise with the number of interruption was given quantitatively and therefore the pressure rise can be predicted. Finally, it was shown that the interruption capability tends to increase with the increasing of opening speed in the puffer type; however, the hybrid type interrupter has a different interruption characteristic.

열파퍼식 가스차단기에서 발생하는 아크 플라즈마에 의한 열유동 특성 (Thermal Flow Characteristics Driven by Arc Plasmas in a Thermal Puffer Type GCB)

  • 이종철;김윤제
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권11호
    • /
    • pp.527-532
    • /
    • 2005
  • During the last ten years the new interruption techniques, which use the arc energy itself to increase the pressure inside a chamber by the PTFE nozzle ablation, have displaced the puffer circuit breakers due to reduced driving forces and better maintainability. In this paper, we have investigated the thermal flow characteristics inside a thermal puffer type gas circuit breaker by solving the Wavier-Stokes equations coupled with Maxwell's equations for considering all instabilities effects such as turbulence and Lorentz forces by transient arc plasmas. These relative inexpensive computer simulations might help the engineer research and design the new interrupter in order to downscale and uprating the GIS integral.

무부하시의 초고압 GCB의 파퍼실린더 내부의 상승압력 계산 (Calculation of Pressure Rise in the Puffer Cylinder of EHV GCB Without Arc)

  • 박경엽;송기동;최영길;신영준;송원표;강종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1559-1561
    • /
    • 1994
  • At present, the principle of puffer action in high current interruption is adopted in almost of the EHV(Extra High Voltage) and UHV(Ultra High Voltage) GCB(Gas Circuit Breakers). The thermal interruption capability of these GCBs critically depends on the pressure rise in the puffer cylinder at current zero. The pressure rise in the puffer cylinder depends on the puffer cylinder volume, flow passage and leakage area in the interrupter, stroke curve etc. Recently commercial CFD(Computational Fluid Dynamics ) packages have been widely adopted to calculate the pressure distribution in the interrupter. However, there are still several problems with it, e.g. very expensive price, moving boundary problem, computation time, difficulty in using the package etc. Thus, the calculation of the puffer cylinder pressure in simple and relatively correct method is essential in early stage of GCB design. In these paper, the model ing technique and computed results for EHV class GCB (HICO, 145kV 40kA and 362kV 40kA GCB) are presented and compared with available measured results.

  • PDF

Small-Gap을 이용한 가스차단기에서의 열가스 속도측정에 관한 연구 (A Study on A Hot Gas Velocity Measurement in GCB Using Small-Gap)

  • 김홍규;송기동;박경엽;홍정표;정진교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권3호
    • /
    • pp.155-158
    • /
    • 2006
  • $SF_6$ gas circuit breakers we widely used for short circuit current interruption in EHV or UHV power system. For a $SF_6$ gas circuit breaker development, the hot gas velocity measurement is necessary during $SF_6$ gas circuit breaker's trip operation. Small-gap flashover characteristics are used for this hot gas velocity measurement. This study sho was the hot gas velocity measurement results during $SF_6$ gas circuit breaker' trip operation.

$SF_6$ 가스차단기에서 가스 속도측정을 위한 Small-Gap 측정시스템에 관한 연구 (Study on The Small-Gap Measuring System for Gas Velocity Measurement of $SF_6$ Gas Circuit Breaker)

  • 김홍규;송기동;이우영;박경엽;정진교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.139-144
    • /
    • 2005
  • [ $SF_6$ ] gas circuit breakers are widely used short circuit current interruption in EHV or UHV power system. For a $SF_6$ gas circuit breaker development, the $SF_6$ gas velocity measurement is necessary during $SF_6$ circuit breaker's trip operation. Small-gap flashover characteristics are used for this measurement. So, small-gap measuring system which will be used to develope GCB should be developed. This study shows the characteristic analysis and experimental results of small-gap measuring system.