• Title/Summary/Keyword: GAUSS

검색결과 969건 처리시간 0.025초

NUMERICAL ANALYSIS OF LEGENDRE-GAUSS-RADAU AND LEGENDRE-GAUSS COLLOCATION METHODS

  • CHEN, DAOYONG;TIAN, HONGJIONG
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.657-670
    • /
    • 2015
  • In this paper, we provide numerical analysis of so-called Legendre Gauss-Radau and Legendre-Gauss collocation methods for ordinary differential equations. After recasting these collocation methods as Runge-Kutta methods, we prove that the Legendre-Gauss collocation method is equivalent to the well-known Gauss method, while the Legendre-Gauss-Radau collocation method does not belong to the classes of Radau IA or Radau IIA methods in the Runge-Kutta literature. Making use of the well-established theory of Runge-Kutta methods, we study stability and accuracy of the Legendre-Gauss-Radau collocation method. Numerical experiments are conducted to confirm our theoretical results on the accuracy and numerical stability of the Legendre-Gauss-Radau collocation method, and compare Legendre-Gauss collocation method with the Gauss method.

HARMONIC GAUSS MAP AND HOPF FIBRATIONS

  • Han, Dong-Soong;Lee, Eun-Hwi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 1998
  • A Gauss map of m-dimensional distribution on a Riemannian manifold M is called a harmonic Gauss map if it is a harmonic map from the manifold into its Grassmann bundle $G_m$(TM) of m-dimensional tangent subspace. We calculate the tension field of the Gauss map of m-dimensional distribution and especially show that the Hopf fibrations on $S^{4n+3}$ are the harmonic Gauss map of 3-dimensional distribution.

  • PDF

HELICOIDAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Choi, Mie-Kyung;Kim, Dong-Soo;Kim, Young-Ho
    • 대한수학회지
    • /
    • 제46권1호
    • /
    • pp.215-223
    • /
    • 2009
  • The helicoidal surfaces with pointwise 1-type or harmonic gauss map in Euclidean 3-space are studied. The notion of pointwise 1-type Gauss map is a generalization of usual sense of 1-type Gauss map. In particular, we prove that an ordinary helicoid is the only genuine helicoidal surface of polynomial kind with pointwise 1-type Gauss map of the first kind and a right cone is the only rational helicoidal surface with pointwise 1-type Gauss map of the second kind. Also, we give a characterization of rational helicoidal surface with harmonic or pointwise 1-type Gauss map.

SPHERICAL SUBMANIFOLDS WITH FINITE TYPE SPHERICAL GAUSS MAP

  • Chen, Bang-Yen;Lue, Huei-Shyong
    • 대한수학회지
    • /
    • 제44권2호
    • /
    • pp.407-442
    • /
    • 2007
  • The study of Euclidean submanifolds with finite type "classical" Gauss map was initiated by B.-Y. Chen and P. Piccinni in [11]. On the other hand, it was believed that for spherical sub manifolds the concept of spherical Gauss map is more relevant than the classical one (see [20]). Thus the purpose of this article is to initiate the study of spherical submanifolds with finite type spherical Gauss map. We obtain several fundamental results in this respect. In particular, spherical submanifolds with 1-type spherical Gauss map are classified. From which we conclude that all isoparametric hypersurfaces of $S^{n+1}$ have 1-type spherical Gauss map. Among others, we also prove that Veronese surface and equilateral minimal torus are the only minimal spherical surfaces with 2-type spherical Gauss map.

CLASSIFICATIONS OF ROTATION SURFACES IN PSEUDO-EUCLIDEAN SPACE

  • Kim, Young-Ho;Yoon, Dae-Won
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.379-396
    • /
    • 2004
  • In this article, we study rotation surfaces in the 4-dimensional pseudo-Euclidean space E$_2$$^4$. Also, we obtain the complete classification theorems for the flat rotation surfaces with finite type Gauss map, pointwise 1-type Gauss map and an equation in terms of the mean curvature vector. In fact, we characterize the flat rotation surfaces of finite type immersion with the Gauss map and the mean curvature vector field, namely the Gauss map of finite type, pointwise 1-type Gauss map and some algebraic equations in terms of the Gauss map and the mean curvature vector field related to the Laplacian of the surfaces with respect to the induced metric.

FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4

  • Aksoyak, Ferdag Kahraman;Yayli, Yusuf
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.305-316
    • /
    • 2016
  • In this paper we study general rotational surfaces in the 4-dimensional Euclidean space $\mathbb{E}^4$ and give a characterization of flat general rotational surface with pointwise 1-type Gauss map. Also, we show that a flat general rotational surface with pointwise 1-type Gauss map is a Lie group if and only if it is a Clifford torus.

SPACE-LIKE SURFACES WITH 1-TYPE GENERALIZED GAUSS MAP

  • Choi, Soon-Meen;Ki, U-Hang;Suh, Young-Jin
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.315-330
    • /
    • 1998
  • Chen and Piccinni [7] have classified all compact surfaces in a Euclidean space $R^{2+p}$ with 1-type generalized Gauss map. Being motivated by this result, the purpose of this paper is to consider the Lorentz version of the classification theorem and to obtain a complete classification of space-like surfaces in indefinite Euclidean space $R_{p}$ $^{2+p}$ with 1-type generalized Gauss map.p.

  • PDF

ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Dursun, Ugur
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.301-312
    • /
    • 2015
  • In this paper, we study a class of spacelike rotational surfaces in the Minkowski 4-space $\mathbb{E}^4_1$ with meridian curves lying in 2-dimensional spacelike planes and having pointwise 1-type Gauss map. We obtain all such surfaces with pointwise 1-type Gauss map of the first kind. Then we prove that the spacelike rotational surface with flat normal bundle and pointwise 1-type Gauss map of the second kind is an open part of a spacelike 2-plane in $\mathbb{E}^4_1$.

THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.519-535
    • /
    • 2018
  • Let ${\mathcal{R}}$ denote the Galois ring of characteristic $p^n$, where p is a prime. In this paper, we investigate the elementary properties of Gauss sums over ${\mathcal{R}}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute the modulus of the Gauss sums.