THE REMAINDER-TERM FOR GAUSS-TYPE QUADRATURES OF ANALYTIC FUNCTIONS

  • Ko, Kwan-Pyo (Division of Internet Engineering Dongseo University)
  • Published : 2004.01.01

Abstract

In this paper we give an expression for the kernel and remainder term of Gauss-Radau and Gauss-Lobatto quadratures and study on an error bound with end points of multiplicity γ.

Keywords

References

  1. J.London Math.Soc. v.6 An asymptotic formula relating to orthogonal polynomial W.Barrett
  2. Interpolation and Approximation P.J.Davis
  3. Methods of numerical integration P.J.Davis;P.Rabinowitz
  4. SIAM.J.Numer.Anal. v.20 Error bound for Gaussian quadrature of analytic functions W.Gautschi;R.S. Varga
  5. J.Comp.and Appl.Math. v.33 The remainder term for analytic functions of Gauss-Radau and Gauss-lobatto quadrature rules with multiple end points W.Gautschi;S.Li
  6. J.Comp.and Appl.Math. v.34 Gauss-Radau and Gauss-Lobatto quadratures with double end points W.Gautschi;S.Li
  7. J.Korean Math.Soc. v.34 The mean-square error bounds for the Gaussian quadrature of analytic functions K.P.Ko;U.J.Choi
  8. Appl.Math.and Comp. v.47 A note on the error in Gaussian quadrature C.Martin;M.Stamp
  9. Numer.Math. v.36 The Numerical Evaluation of Hadamard Finite-part Integrals D.F.Paget